ardupilot/libraries/AP_GPS/AP_GPS_MAV.cpp

179 lines
6.4 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// MAVLINK GPS driver
//
#include "AP_GPS_MAV.h"
#include <stdint.h>
#if AP_GPS_MAV_ENABLED
// Reading does nothing in this class; we simply return whether or not
// the latest reading has been consumed. By calling this function we assume
// the caller is consuming the new data;
bool AP_GPS_MAV::read(void)
{
if (_new_data) {
_new_data = false;
return true;
}
return false;
}
// handles an incoming mavlink message (HIL_GPS) and sets
// corresponding gps data appropriately;
void AP_GPS_MAV::handle_msg(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_GPS_INPUT: {
mavlink_gps_input_t packet;
mavlink_msg_gps_input_decode(&msg, &packet);
bool have_alt = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_ALT) == 0);
bool have_hdop = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_HDOP) == 0);
bool have_vdop = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VDOP) == 0);
bool have_vel_h = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VEL_HORIZ) == 0);
bool have_vel_v = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VEL_VERT) == 0);
bool have_sa = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_SPEED_ACCURACY) == 0);
bool have_ha = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_HORIZONTAL_ACCURACY) == 0);
bool have_va = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VERTICAL_ACCURACY) == 0);
bool have_yaw = (packet.yaw != 0);
state.time_week = packet.time_week;
state.time_week_ms = packet.time_week_ms;
state.status = (AP_GPS::GPS_Status)packet.fix_type;
Location loc = {};
loc.lat = packet.lat;
loc.lng = packet.lon;
if (have_alt) {
loc.alt = packet.alt * 100; // convert to centimeters
}
state.location = loc;
if (have_hdop) {
state.hdop = packet.hdop * 100; // convert to centimeters
}
if (have_vdop) {
state.vdop = packet.vdop * 100; // convert to centimeters
}
if (have_vel_h) {
Vector3f vel(packet.vn, packet.ve, 0);
if (have_vel_v) {
vel.z = packet.vd;
state.have_vertical_velocity = true;
}
state.velocity = vel;
state.ground_course = wrap_360(degrees(atan2f(vel.y, vel.x)));
state.ground_speed = vel.xy().length();
}
if (have_sa) {
state.speed_accuracy = packet.speed_accuracy;
state.have_speed_accuracy = true;
}
if (have_ha) {
state.horizontal_accuracy = packet.horiz_accuracy;
state.have_horizontal_accuracy = true;
}
if (have_va) {
state.vertical_accuracy = packet.vert_accuracy;
state.have_vertical_accuracy = true;
}
const uint32_t now_ms = AP_HAL::millis();
if (have_yaw) {
state.gps_yaw = wrap_360(packet.yaw*0.01);
state.gps_yaw_time_ms = now_ms;
state.have_gps_yaw = true;
state.gps_yaw_configured = true;
}
if (packet.fix_type >= 3 && packet.time_week > 0) {
/*
use the millisecond timestamp from the GPS_INPUT
packet into jitter correction to get a local
timestamp corrected for transport jitter
*/
if (first_week == 0) {
first_week = packet.time_week;
}
uint32_t timestamp_ms = (packet.time_week - first_week) * AP_MSEC_PER_WEEK + packet.time_week_ms;
uint32_t corrected_ms = jitter.correct_offboard_timestamp_msec(timestamp_ms, now_ms);
state.last_corrected_gps_time_us = (corrected_ms * 1000ULL);
state.corrected_timestamp_updated = true;
if (have_yaw) {
state.gps_yaw_time_ms = corrected_ms;
}
}
state.num_sats = packet.satellites_visible;
state.last_gps_time_ms = now_ms;
_new_data = true;
break;
}
case MAVLINK_MSG_ID_HIL_GPS: {
mavlink_hil_gps_t packet;
mavlink_msg_hil_gps_decode(&msg, &packet);
state.time_week = 0;
state.time_week_ms = packet.time_usec/1000;
state.status = (AP_GPS::GPS_Status)packet.fix_type;
Location loc = {};
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt * 0.1f;
state.location = loc;
state.hdop = MIN(packet.eph, GPS_UNKNOWN_DOP);
state.vdop = MIN(packet.epv, GPS_UNKNOWN_DOP);
if (packet.vel < 65535) {
state.ground_speed = packet.vel * 0.01f;
}
Vector3f vel(packet.vn*0.01f, packet.ve*0.01f, packet.vd*0.01f);
state.velocity = vel;
if (packet.vd != 0) {
state.have_vertical_velocity = true;
}
if (packet.cog < 36000) {
state.ground_course = packet.cog * 0.01f;
}
state.have_speed_accuracy = false;
state.have_horizontal_accuracy = false;
state.have_vertical_accuracy = false;
if (packet.satellites_visible < 255) {
state.num_sats = packet.satellites_visible;
}
state.last_gps_time_ms = AP_HAL::millis();
_new_data = true;
break;
}
default:
// ignore all other messages
break;
}
}
#endif