ardupilot/libraries/AP_HAL_ChibiOS/I2CDevice.cpp

373 lines
11 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "I2CDevice.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "Util.h"
2018-08-07 05:47:10 -03:00
#if HAL_USE_I2C == TRUE && defined(HAL_I2C_DEVICE_LIST)
2018-08-07 05:47:10 -03:00
#include "Scheduler.h"
#include "hwdef/common/stm32_util.h"
#include <AP_InternalError/AP_InternalError.h>
#include "ch.h"
#include "hal.h"
static const struct I2CInfo {
struct I2CDriver *i2c;
uint8_t dma_channel_rx;
uint8_t dma_channel_tx;
ioline_t scl_line;
ioline_t sda_line;
} I2CD[] = { HAL_I2C_DEVICE_LIST };
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
2018-08-02 20:27:17 -03:00
I2CBus I2CDeviceManager::businfo[ARRAY_SIZE(I2CD)];
#ifndef HAL_I2C_BUS_BASE
#define HAL_I2C_BUS_BASE 0
#endif
// default to 100kHz clock for maximum reliability. This can be
// changed in hwdef.dat
#ifndef HAL_I2C_MAX_CLOCK
#define HAL_I2C_MAX_CLOCK 100000
#endif
// values calculated with STM32CubeMX tool, PCLK=54MHz
#define HAL_I2C_F7_100_TIMINGR 0x20404768
#define HAL_I2C_F7_400_TIMINGR 0x6000030D
/*
enable clear (toggling SCL) on I2C bus timeouts which leave SDA stuck low
*/
#ifndef HAL_I2C_CLEAR_ON_TIMEOUT
#define HAL_I2C_CLEAR_ON_TIMEOUT 1
#endif
// get a handle for DMA sharing DMA channels with other subsystems
void I2CBus::dma_init(void)
{
chMtxObjectInit(&dma_lock);
dma_handle = new Shared_DMA(I2CD[busnum].dma_channel_tx, I2CD[busnum].dma_channel_rx,
FUNCTOR_BIND_MEMBER(&I2CBus::dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&I2CBus::dma_deallocate, void, Shared_DMA *));
}
// Clear Bus to avoid bus lockup
void I2CBus::clear_all()
{
for (uint8_t i=0; i<ARRAY_SIZE(I2CD); i++) {
clear_bus(i);
}
}
/*
clear a stuck bus (bus held by a device that is holding SDA low) by
clocking out pulses on SCL to let the device complete its
transaction
*/
void I2CBus::clear_bus(uint8_t busidx)
{
#if HAL_I2C_CLEAR_ON_TIMEOUT
const struct I2CInfo &info = I2CD[busidx];
const iomode_t mode_saved = palReadLineMode(info.scl_line);
palSetLineMode(info.scl_line, PAL_MODE_OUTPUT_PUSHPULL);
for(uint8_t j = 0; j < 20; j++) {
palToggleLine(info.scl_line);
hal.scheduler->delay_microseconds(10);
}
palSetLineMode(info.scl_line, mode_saved);
#endif
}
#if HAL_I2C_CLEAR_ON_TIMEOUT
/*
read SDA on a bus, to check if it may be stuck
*/
uint8_t I2CBus::read_sda(uint8_t busidx)
{
const struct I2CInfo &info = I2CD[busidx];
const iomode_t mode_saved = palReadLineMode(info.sda_line);
palSetLineMode(info.sda_line, PAL_MODE_INPUT);
uint8_t ret = palReadLine(info.sda_line);
palSetLineMode(info.sda_line, mode_saved);
return ret;
}
#endif
// setup I2C buses
I2CDeviceManager::I2CDeviceManager(void)
{
2018-08-02 20:27:17 -03:00
for (uint8_t i=0; i<ARRAY_SIZE(I2CD); i++) {
businfo[i].busnum = i;
businfo[i].dma_init();
/*
setup default I2C config. As each device is opened we will
drop the speed to be the minimum speed requested
*/
businfo[i].busclock = HAL_I2C_MAX_CLOCK;
2019-10-31 07:59:23 -03:00
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3)
if (businfo[i].busclock <= 100000) {
businfo[i].i2ccfg.timingr = HAL_I2C_F7_100_TIMINGR;
businfo[i].busclock = 100000;
} else {
businfo[i].i2ccfg.timingr = HAL_I2C_F7_400_TIMINGR;
businfo[i].busclock = 400000;
}
#else
businfo[i].i2ccfg.op_mode = OPMODE_I2C;
businfo[i].i2ccfg.clock_speed = businfo[i].busclock;
if (businfo[i].i2ccfg.clock_speed <= 100000) {
businfo[i].i2ccfg.duty_cycle = STD_DUTY_CYCLE;
} else {
businfo[i].i2ccfg.duty_cycle = FAST_DUTY_CYCLE_2;
}
#endif
}
}
I2CDevice::I2CDevice(uint8_t busnum, uint8_t address, uint32_t bus_clock, bool use_smbus, uint32_t timeout_ms) :
_retries(2),
_address(address),
_use_smbus(use_smbus),
_timeout_ms(timeout_ms),
bus(I2CDeviceManager::businfo[busnum])
{
set_device_bus(busnum+HAL_I2C_BUS_BASE);
set_device_address(address);
asprintf(&pname, "I2C:%u:%02x",
(unsigned)busnum, (unsigned)address);
if (bus_clock < bus.busclock) {
2019-10-31 07:59:23 -03:00
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3)
if (bus_clock <= 100000) {
bus.i2ccfg.timingr = HAL_I2C_F7_100_TIMINGR;
bus.busclock = 100000;
}
#else
bus.i2ccfg.clock_speed = bus_clock;
bus.busclock = bus_clock;
if (bus_clock <= 100000) {
bus.i2ccfg.duty_cycle = STD_DUTY_CYCLE;
}
#endif
hal.console->printf("I2C%u clock %ukHz\n", busnum, unsigned(bus.busclock/1000));
}
}
I2CDevice::~I2CDevice()
{
#if 0
printf("I2C device bus %u address 0x%02x closed\n",
(unsigned)bus.busnum, (unsigned)_address);
#endif
free(pname);
}
/*
allocate DMA channel, nothing to do, as we don't keep the bus active between transactions
*/
void I2CBus::dma_allocate(Shared_DMA *ctx)
{
}
/*
deallocate DMA channel
*/
void I2CBus::dma_deallocate(Shared_DMA *)
{
}
bool I2CDevice::transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
if (!bus.semaphore.check_owner()) {
hal.console->printf("I2C: not owner of 0x%x for addr 0x%02x\n", (unsigned)get_bus_id(), _address);
return false;
}
2019-10-31 07:59:23 -03:00
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F3)
if (_use_smbus) {
bus.i2ccfg.cr1 |= I2C_CR1_SMBHEN;
} else {
bus.i2ccfg.cr1 &= ~I2C_CR1_SMBHEN;
}
#else
if (_use_smbus) {
bus.i2ccfg.op_mode = OPMODE_SMBUS_HOST;
} else {
bus.i2ccfg.op_mode = OPMODE_I2C;
}
#endif
if (_split_transfers) {
/*
splitting the transfer() into two pieces avoids a stop condition
with SCL low which is not supported on some devices (such as
LidarLite blue label)
*/
if (send && send_len) {
if (!_transfer(send, send_len, nullptr, 0)) {
return false;
}
}
if (recv && recv_len) {
if (!_transfer(nullptr, 0, recv, recv_len)) {
return false;
}
}
} else {
// combined transfer
if (!_transfer(send, send_len, recv, recv_len)) {
return false;
}
}
return true;
}
bool I2CDevice::_transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
i2cAcquireBus(I2CD[bus.busnum].i2c);
bus.bouncebuffer_setup(send, send_len, recv, recv_len);
for(uint8_t i=0 ; i <= _retries; i++) {
int ret;
// calculate a timeout as twice the expected transfer time, and set as min of 4ms
uint32_t timeout_ms = 1+2*(((8*1000000UL/bus.busclock)*(send_len+recv_len))/1000);
timeout_ms = MAX(timeout_ms, _timeout_ms);
// we get the lock and start the bus inside the retry loop to
// allow us to give up the DMA channel to an SPI device on
// retries
bus.dma_handle->lock();
i2cStart(I2CD[bus.busnum].i2c, &bus.i2ccfg);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state");
2019-05-16 04:57:35 -03:00
osalSysLock();
hal.util->persistent_data.i2c_count++;
osalSysUnlock();
if(send_len == 0) {
ret = i2cMasterReceiveTimeout(I2CD[bus.busnum].i2c, _address, recv, recv_len, chTimeMS2I(timeout_ms));
} else {
ret = i2cMasterTransmitTimeout(I2CD[bus.busnum].i2c, _address, send, send_len,
recv, recv_len, chTimeMS2I(timeout_ms));
}
i2cSoftStop(I2CD[bus.busnum].i2c);
osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_STOP, "i2cStart state");
bus.dma_handle->unlock();
if (I2CD[bus.busnum].i2c->errors & I2C_ISR_LIMIT) {
AP::internalerror().error(AP_InternalError::error_t::i2c_isr);
break;
}
#ifdef STM32_I2C_ISR_LIMIT
2019-08-25 04:46:52 -03:00
AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
pd.i2c_isr_count += I2CD[bus.busnum].i2c->isr_count;
#endif
2019-08-25 04:46:52 -03:00
if (ret == MSG_OK) {
bus.bouncebuffer_finish(send, recv, recv_len);
i2cReleaseBus(I2CD[bus.busnum].i2c);
return true;
}
#if HAL_I2C_CLEAR_ON_TIMEOUT
if (ret == MSG_TIMEOUT && I2CBus::read_sda(bus.busnum) == 0) {
I2CBus::clear_bus(bus.busnum);
}
#endif
}
bus.bouncebuffer_finish(send, recv, recv_len);
i2cReleaseBus(I2CD[bus.busnum].i2c);
return false;
}
bool I2CDevice::read_registers_multiple(uint8_t first_reg, uint8_t *recv,
uint32_t recv_len, uint8_t times)
{
return false;
}
/*
register a periodic callback
*/
AP_HAL::Device::PeriodicHandle I2CDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return bus.register_periodic_callback(period_usec, cb, this);
}
/*
adjust a periodic callback
*/
bool I2CDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
{
return bus.adjust_timer(h, period_usec);
}
AP_HAL::OwnPtr<AP_HAL::I2CDevice>
I2CDeviceManager::get_device(uint8_t bus, uint8_t address,
uint32_t bus_clock,
bool use_smbus,
uint32_t timeout_ms)
{
bus -= HAL_I2C_BUS_BASE;
2018-08-02 20:27:17 -03:00
if (bus >= ARRAY_SIZE(I2CD)) {
return AP_HAL::OwnPtr<AP_HAL::I2CDevice>(nullptr);
}
auto dev = AP_HAL::OwnPtr<AP_HAL::I2CDevice>(new I2CDevice(bus, address, bus_clock, use_smbus, timeout_ms));
return dev;
}
2018-06-21 00:09:15 -03:00
/*
get mask of bus numbers for all configured I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask(void) const
{
2018-08-02 20:27:17 -03:00
return ((1U << ARRAY_SIZE(I2CD)) - 1) << HAL_I2C_BUS_BASE;
2018-06-21 00:09:15 -03:00
}
/*
get mask of bus numbers for all configured internal I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask_internal(void) const
{
// assume first bus is internal
2018-07-13 06:47:38 -03:00
return get_bus_mask() & HAL_I2C_INTERNAL_MASK;
2018-06-21 00:09:15 -03:00
}
/*
get mask of bus numbers for all configured external I2C buses
*/
uint32_t I2CDeviceManager::get_bus_mask_external(void) const
{
// assume first bus is internal
2018-07-13 06:47:38 -03:00
return get_bus_mask() & ~HAL_I2C_INTERNAL_MASK;
2018-06-21 00:09:15 -03:00
}
#endif // HAL_USE_I2C