ardupilot/ArduCopter/control_modes.pde

141 lines
3.0 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void read_control_switch()
{
static bool switch_debouncer = false;
byte switchPosition = readSwitch();
if (oldSwitchPosition != switchPosition){
if(switch_debouncer){
// remember the prev location for GS
prev_WP = current_loc;
oldSwitchPosition = switchPosition;
switch_debouncer = false;
set_mode(flight_modes[switchPosition]);
#if CH7_OPTION != SIMPLE_MODE_CONTROL
// setup Simple mode
// do we enable simple mode?
2011-09-17 01:33:01 -03:00
do_simple = (g.simple_modes & (1 << switchPosition));
//Serial.printf("do simple: %d \n", (int)do_simple);
#endif
}else{
switch_debouncer = true;
}
}
}
static byte readSwitch(void){
int pulsewidth = g.rc_5.radio_in; // default for Arducopter
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
if (pulsewidth >= 1750) return 5; // Hardware Manual
return 0;
}
static void reset_control_switch()
{
oldSwitchPosition = -1;
read_control_switch();
}
static boolean trim_flag;
// read at 10 hz
// set this to your trainer switch
static void read_trim_switch()
{
#if CH7_OPTION == CH7_FLIP
if (g.rc_7.control_in > 800 && g.rc_3.control_in != 0){
do_flip = true;
}
#elif CH7_OPTION == CH7_SIMPLE_MODE
do_simple = (g.rc_7.control_in > 800);
//Serial.println(g.rc_7.control_in, DEC);
#elif CH7_OPTION == CH7_RTL
2011-09-20 14:39:39 -03:00
if(control_mode != RTL && g.rc_7.control_in > 800)
set_mode(RTL);
//do_simple = (g.rc_7.control_in > 800);
//Serial.println(g.rc_7.control_in, DEC);
#elif CH7_OPTION == CH7_SET_HOVER
// switch is engaged
if (g.rc_7.control_in > 800){
trim_flag = true;
}else{ // switch is disengaged
if(trim_flag){
// set the throttle nominal
if(g.rc_3.control_in > 150){
g.throttle_cruise.set_and_save(g.rc_3.control_in);
//Serial.printf("tnom %d\n", g.throttle_cruise.get());
}
trim_flag = false;
}
}
#endif
}
static void auto_trim()
{
if(auto_level_counter > 0){
//g.rc_1.dead_zone = 60; // 60 = .6 degrees
//g.rc_2.dead_zone = 60;
auto_level_counter--;
trim_accel();
led_mode = AUTO_TRIM_LEDS;
if(auto_level_counter == 1){
//g.rc_1.dead_zone = 0; // 60 = .6 degrees
//g.rc_2.dead_zone = 0;
led_mode = NORMAL_LEDS;
clear_leds();
imu.save();
Serial.println("Done");
auto_level_counter = 0;
}
}
}
static void trim_accel()
{
g.pi_stabilize_roll.reset_I();
g.pi_stabilize_pitch.reset_I();
if(g.rc_1.control_in > 0){
imu.ay(imu.ay() + 1);
}else if (g.rc_1.control_in < 0){
imu.ay(imu.ay() - 1);
}
if(g.rc_2.control_in > 0){
imu.ax(imu.ax() + 1);
}else if (g.rc_2.control_in < 0){
imu.ax(imu.ax() - 1);
}
/*
Serial.printf_P(PSTR("r:%ld p:%ld ax:%f, ay:%f, az:%f\n"),
dcm.roll_sensor,
dcm.pitch_sensor,
(float)imu.ax(),
(float)imu.ay(),
(float)imu.az());
//*/
}