ardupilot/ArduPlane/sensors.cpp

385 lines
12 KiB
C++
Raw Normal View History

2015-05-13 03:09:36 -03:00
#include "Plane.h"
#include <AP_RSSI/AP_RSSI.h>
2015-05-13 03:09:36 -03:00
2016-05-23 22:31:53 -03:00
void Plane::init_barometer(bool full_calibration)
{
gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer");
2016-05-23 22:31:53 -03:00
if (full_calibration) {
barometer.calibrate();
} else {
barometer.update_calibration();
}
2015-11-18 15:17:50 -04:00
gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
}
2015-05-13 03:09:36 -03:00
void Plane::init_rangefinder(void)
{
rangefinder.init();
}
/*
read the rangefinder and update height estimate
*/
2015-05-13 03:09:36 -03:00
void Plane::read_rangefinder(void)
{
// notify the rangefinder of our approximate altitude above ground to allow it to power on
// during low-altitude flight when configured to power down during higher-altitude flight
float height;
#if AP_TERRAIN_AVAILABLE
if (terrain.status() == AP_Terrain::TerrainStatusOK && terrain.height_above_terrain(height, true)) {
rangefinder.set_estimated_terrain_height(height);
} else
#endif
{
// use the best available alt estimate via baro above home
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
// ensure the rangefinder is powered-on when land alt is higher than home altitude.
// This is done using the target alt which we know is below us and we are sinking to it
height = height_above_target();
} else {
// otherwise just use the best available baro estimate above home.
height = relative_altitude;
}
rangefinder.set_estimated_terrain_height(height);
}
rangefinder.update();
if (should_log(MASK_LOG_SONAR))
Log_Write_Sonar();
rangefinder_height_update();
}
/*
calibrate compass
*/
void Plane::compass_cal_update() {
if (!hal.util->get_soft_armed()) {
compass.compass_cal_update();
}
}
/*
Accel calibration
*/
void Plane::accel_cal_update() {
if (hal.util->get_soft_armed()) {
return;
}
ins.acal_update();
float trim_roll, trim_pitch;
if(ins.get_new_trim(trim_roll, trim_pitch)) {
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
}
2013-08-28 09:37:07 -03:00
/*
ask airspeed sensor for a new value
*/
2015-05-13 03:09:36 -03:00
void Plane::read_airspeed(void)
{
if (airspeed.enabled()) {
airspeed.read();
if (should_log(MASK_LOG_IMU)) {
Log_Write_Airspeed();
}
calc_airspeed_errors();
// supply a new temperature to the barometer from the digital
// airspeed sensor if we can
float temperature;
if (airspeed.get_temperature(temperature)) {
barometer.set_external_temperature(temperature);
}
}
// update smoothed airspeed estimate
float aspeed;
if (ahrs.airspeed_estimate(&aspeed)) {
smoothed_airspeed = smoothed_airspeed * 0.8f + aspeed * 0.2f;
}
}
2015-05-13 03:09:36 -03:00
void Plane::zero_airspeed(bool in_startup)
{
2014-11-13 06:12:59 -04:00
airspeed.calibrate(in_startup);
read_airspeed();
// update barometric calibration with new airspeed supplied temperature
barometer.update_calibration();
gcs_send_text(MAV_SEVERITY_INFO,"Airspeed calibration started");
}
2013-09-29 09:54:39 -03:00
// read_battery - reads battery voltage and current and invokes failsafe
// should be called at 10hz
2015-05-13 03:09:36 -03:00
void Plane::read_battery(void)
{
2013-09-29 09:54:39 -03:00
battery.read();
compass.set_current(battery.current_amps());
2012-08-16 21:50:15 -03:00
if (!usb_connected &&
hal.util->get_soft_armed() &&
battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) {
low_battery_event();
}
if (battery.get_type() != AP_BattMonitor::BattMonitor_TYPE_NONE) {
2017-01-20 01:37:07 -04:00
AP_Notify::flags.battery_voltage = battery.voltage();
}
if (should_log(MASK_LOG_CURRENT)) {
Log_Write_Current();
}
}
// read the receiver RSSI as an 8 bit number for MAVLink
// RC_CHANNELS_SCALED message
2015-05-13 03:09:36 -03:00
void Plane::read_receiver_rssi(void)
{
receiver_rssi = rssi.read_receiver_rssi_uint8();
}
/*
update RPM sensors
*/
void Plane::rpm_update(void)
{
rpm_sensor.update();
if (rpm_sensor.healthy(0) || rpm_sensor.healthy(1)) {
if (should_log(MASK_LOG_RC)) {
DataFlash.Log_Write_RPM(rpm_sensor);
}
}
}
/*
update AP_Button
*/
void Plane::button_update(void)
{
g2.button.update();
}
/*
update AP_ICEngine
*/
void Plane::ice_update(void)
{
g2.ice_control.update();
}
// update error mask of sensors and subsystems. The mask
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set
// then it indicates that the sensor or subsystem is present but
// not functioning correctly.
void Plane::update_sensor_status_flags(void)
{
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (geofence_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (aparm.throttle_min < 0) {
control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (plane.DataFlash.logging_present()) { // primary logging only (usually File)
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
if (plane.battery.healthy()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence, motor, and battery output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE & ~MAV_SYS_STATUS_LOGGING & ~MAV_SYS_STATUS_SENSOR_BATTERY);
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
if (plane.DataFlash.logging_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
if (g.fs_batt_voltage > 0 || g.fs_batt_mah > 0) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case QSTABILIZE:
case QHOVER:
case QLAND:
case QLOITER:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case GUIDED:
case CIRCLE:
case QRTL:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
MAV_SYS_STATUS_SENSOR_3D_MAG |
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
// trying to use EKF without properly calibrated accelerometers
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
#if GEOFENCE_ENABLED
if (geofence_breached()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
#endif
if (plane.DataFlash.logging_failed()) {
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING;
}
if (millis() - failsafe.last_valid_rc_ms < 200) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
} else {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
#if AP_TERRAIN_AVAILABLE
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (g.rangefinder_landing) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
2016-10-22 07:27:57 -03:00
if (aparm.throttle_min < 0 && SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < 0) {
control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
if (plane.failsafe.low_battery) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_BATTERY;
}
#if FRSKY_TELEM_ENABLED == ENABLED
// give mask of error flags to Frsky_Telemetry
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present);
#endif
}