5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-25 10:08:28 -04:00
ardupilot/libraries/AC_PrecLand/AC_PrecLand.h

160 lines
6.5 KiB
C
Raw Normal View History

#pragma once
2015-08-28 05:11:52 -03:00
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <stdint.h>
#include "PosVelEKF.h"
#include <AP_HAL/utility/RingBuffer.h>
// declare backend classes
class AC_PrecLand_Backend;
class AC_PrecLand_Companion;
class AC_PrecLand_IRLock;
class AC_PrecLand_SITL_Gazebo;
class AC_PrecLand_SITL;
class AC_PrecLand
{
// declare backends as friends
friend class AC_PrecLand_Backend;
friend class AC_PrecLand_Companion;
friend class AC_PrecLand_IRLock;
friend class AC_PrecLand_SITL_Gazebo;
friend class AC_PrecLand_SITL;
public:
AC_PrecLand();
/* Do not allow copies */
AC_PrecLand(const AC_PrecLand &other) = delete;
AC_PrecLand &operator=(const AC_PrecLand&) = delete;
// precision landing behaviours (held in PRECLAND_ENABLED parameter)
enum PrecLandBehaviour {
PRECLAND_BEHAVIOUR_DISABLED,
PRECLAND_BEHAVIOR_ALWAYSLAND,
PRECLAND_BEHAVIOR_CAUTIOUS
};
// types of precision landing (used for PRECLAND_TYPE parameter)
enum PrecLandType {
PRECLAND_TYPE_NONE = 0,
PRECLAND_TYPE_COMPANION,
PRECLAND_TYPE_IRLOCK,
PRECLAND_TYPE_SITL_GAZEBO,
PRECLAND_TYPE_SITL,
};
// perform any required initialisation of landing controllers
2018-09-21 04:01:30 -03:00
// update_rate_hz should be the rate at which the update method will be called in hz
void init(uint16_t update_rate_hz);
// returns true if precision landing is healthy
bool healthy() const { return _backend_state.healthy; }
// returns true if precision landing is enabled (used only for logging)
bool enabled() const { return _enabled.get(); }
// returns time of last update
uint32_t last_update_ms() const { return _last_update_ms; }
// returns time of last time target was seen
uint32_t last_backend_los_meas_ms() const { return _last_backend_los_meas_ms; }
// returns estimator type
uint8_t estimator_type() const { return _estimator_type; }
// returns ekf outlier count
uint32_t ekf_outlier_count() const { return _outlier_reject_count; }
// give chance to driver to get updates from sensor, should be called at 400hz
void update(float rangefinder_alt_cm, bool rangefinder_alt_valid);
// returns target position relative to the EKF origin
bool get_target_position_cm(Vector2f& ret);
// returns target relative position as 3D vector
void get_target_position_measurement_cm(Vector3f& ret);
// returns target position relative to vehicle
bool get_target_position_relative_cm(Vector2f& ret);
// returns target velocity relative to vehicle
bool get_target_velocity_relative_cms(Vector2f& ret);
// returns true when the landing target has been detected
bool target_acquired();
// process a LANDING_TARGET mavlink message
void handle_msg(const mavlink_message_t &msg);
// parameter var table
static const struct AP_Param::GroupInfo var_info[];
private:
enum estimator_type_t {
ESTIMATOR_TYPE_RAW_SENSOR = 0,
ESTIMATOR_TYPE_KALMAN_FILTER = 1
};
// returns enabled parameter as an behaviour
enum PrecLandBehaviour get_behaviour() const { return (enum PrecLandBehaviour)(_enabled.get()); }
// run target position estimator
void run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid);
// If a new measurement was retrieved, sets _target_pos_rel_meas_NED and returns true
bool construct_pos_meas_using_rangefinder(float rangefinder_alt_m, bool rangefinder_alt_valid);
// get vehicle body frame 3D vector from vehicle to target. returns true on success, false on failure
bool retrieve_los_meas(Vector3f& target_vec_unit_body);
// calculate target's position and velocity relative to the vehicle (used as input to position controller)
// results are stored in_target_pos_rel_out_NE, _target_vel_rel_out_NE
void run_output_prediction();
// parameters
AP_Int8 _enabled; // enabled/disabled and behaviour
AP_Int8 _type; // precision landing sensor type
AP_Int8 _bus; // which sensor bus
AP_Int8 _estimator_type; // precision landing estimator type
AP_Float _lag; // sensor lag in seconds
AP_Float _yaw_align; // Yaw angle from body x-axis to sensor x-axis.
AP_Float _land_ofs_cm_x; // Desired landing position of the camera forward of the target in vehicle body frame
AP_Float _land_ofs_cm_y; // Desired landing position of the camera right of the target in vehicle body frame
AP_Float _accel_noise; // accelerometer process noise
AP_Vector3f _cam_offset; // Position of the camera relative to the CG
uint32_t _last_update_ms; // system time in millisecond when update was last called
bool _target_acquired; // true if target has been seen recently
uint32_t _last_backend_los_meas_ms; // system time target was last seen
PosVelEKF _ekf_x, _ekf_y; // Kalman Filter for x and y axis
uint32_t _outlier_reject_count; // mini-EKF's outlier counter (3 consecutive outliers lead to EKF accepting updates)
Vector3f _target_pos_rel_meas_NED; // target's relative position as 3D vector
Vector2f _target_pos_rel_est_NE; // target's position relative to the IMU, not compensated for lag
Vector2f _target_vel_rel_est_NE; // target's velocity relative to the IMU, not compensated for lag
Vector2f _target_pos_rel_out_NE; // target's position relative to the camera, fed into position controller
Vector2f _target_vel_rel_out_NE; // target's velocity relative to the CG, fed into position controller
// structure and buffer to hold a history of vehicle velocity
struct inertial_data_frame_s {
Matrix3f Tbn; // dcm rotation matrix to rotate body frame to north
Vector3f correctedVehicleDeltaVelocityNED;
Vector3f inertialNavVelocity;
bool inertialNavVelocityValid;
float dt;
uint64_t time_usec;
};
ObjectArray<inertial_data_frame_s> *_inertial_history;
// backend state
struct precland_state {
bool healthy;
} _backend_state;
AC_PrecLand_Backend *_backend; // pointers to backend precision landing driver
};