AC_PrecLand: redo math, simplify interface

This commit is contained in:
Jonathan Challinger 2016-06-16 10:10:48 -07:00 committed by Randy Mackay
parent 7fddf20f0b
commit f74e162451
2 changed files with 96 additions and 55 deletions

View File

@ -32,7 +32,7 @@ const AP_Param::GroupInfo AC_PrecLand::var_info[] = {
AC_PrecLand::AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav) :
_ahrs(ahrs),
_inav(inav),
_have_estimate(false),
_last_update_ms(0),
_backend(NULL)
{
// set parameters to defaults
@ -92,29 +92,37 @@ void AC_PrecLand::update(float alt_above_terrain_cm)
}
}
// get_target_shift - returns 3D vector of earth-frame position adjustments to target
Vector3f AC_PrecLand::get_target_shift(const Vector3f &orig_target)
bool AC_PrecLand::target_acquired()
{
Vector3f shift; // default shift initialised to zero
// do not shift target if not enabled or no position estimate
if (_backend == NULL || !_have_estimate) {
return shift;
}
// shift is target_offset - (original target - current position)
Vector3f curr_offset_from_target = orig_target - _inav.get_position();
shift = _target_pos_offset - curr_offset_from_target;
shift.z = 0.0f;
// record we have consumed this reading (perhaps there is a cleaner way to do this using timestamps)
_have_estimate = false;
// return adjusted target
return shift;
return (AP_HAL::millis()-_last_update_ms) < 1000;
}
// calc_angles_and_pos - converts sensor's body-frame angles to earth-frame angles and position estimate
bool AC_PrecLand::get_target_position(Vector3f& ret)
{
if (!target_acquired()) {
return false;
}
ret = _target_pos;
return true;
}
bool AC_PrecLand::get_target_position_relative(Vector3f& ret)
{
if (!target_acquired()) {
return false;
}
ret = _target_pos_rel;
return true;
}
bool AC_PrecLand::get_target_velocity_relative(Vector3f& ret)
{
return false;
}
// converts sensor's body-frame angles to earth-frame angles and position estimate
// raw sensor angles stored in _angle_to_target (might be in earth frame, or maybe body frame)
// earth-frame angles stored in _ef_angle_to_target
// position estimate is stored in _target_pos
@ -122,42 +130,56 @@ void AC_PrecLand::calc_angles_and_pos(float alt_above_terrain_cm)
{
// exit immediately if not enabled
if (_backend == NULL) {
_have_estimate = false;
return;
}
// get angles to target from backend
if (!_backend->get_angle_to_target(_angle_to_target.x, _angle_to_target.y)) {
_have_estimate = false;
return;
}
float x_rad;
float y_rad;
_angle_to_target.x = -_angle_to_target.x;
_angle_to_target.y = -_angle_to_target.y;
if(_backend->get_frame_of_reference() == MAV_FRAME_LOCAL_NED){
//don't subtract vehicle lean angles
x_rad = _angle_to_target.x;
y_rad = -_angle_to_target.y;
}else{ // assume MAV_FRAME_BODY_NED (i.e. a hard-mounted sensor)
// subtract vehicle lean angles
x_rad = _angle_to_target.x - _ahrs.roll;
y_rad = -_angle_to_target.y + _ahrs.pitch;
// compensate for delay
_angle_to_target.x -= _ahrs.get_gyro().x*4.0e-2f;
_angle_to_target.y -= _ahrs.get_gyro().y*4.0e-2f;
Vector3f target_vec_ned;
if (_angle_to_target.is_zero()) {
target_vec_ned = Vector3f(0.0f,0.0f,1.0f);
} else {
float theta = _angle_to_target.length();
Vector3f axis = Vector3f(_angle_to_target.x, _angle_to_target.y, 0.0f)/theta;
float sin_theta = sinf(theta);
float cos_theta = cosf(theta);
target_vec_ned.x = axis.x*axis.z*(1.0f - cos_theta) + axis.y*sin_theta;
target_vec_ned.y = axis.y*axis.z*(1.0f - cos_theta) - axis.x*sin_theta;
target_vec_ned.z = cos_theta + sq(axis.z)*(1.0f-cos_theta);
}
// rotate to earth-frame angles
_ef_angle_to_target.x = y_rad*_ahrs.cos_yaw() - x_rad*_ahrs.sin_yaw();
_ef_angle_to_target.y = y_rad*_ahrs.sin_yaw() + x_rad*_ahrs.cos_yaw();
// rotate into NED frame
target_vec_ned = _ahrs.get_rotation_body_to_ned()*target_vec_ned;
// get current altitude (constrained to no lower than 50cm)
float alt = MAX(alt_above_terrain_cm, 50.0f);
// extract the angles to target (logging only)
_ef_angle_to_target.x = atan2f(target_vec_ned.z,target_vec_ned.x);
_ef_angle_to_target.y = atan2f(target_vec_ned.z,target_vec_ned.y);
// convert earth-frame angles to earth-frame position offset
_target_pos_offset.x = alt*tanf(_ef_angle_to_target.x);
_target_pos_offset.y = alt*tanf(_ef_angle_to_target.y);
_target_pos_offset.z = 0; // not used
// ensure that the angle to target is no more than 70 degrees
if (target_vec_ned.z > 0.26f) {
// get current altitude (constrained to be positive)
float alt = MAX(alt_above_terrain_cm, 0.0f);
float dist = alt/target_vec_ned.z;
//
_target_pos_rel.x = target_vec_ned.x*dist;
_target_pos_rel.y = target_vec_ned.y*dist;
_target_pos_rel.z = alt; // not used
_target_pos = _inav.get_position()+_target_pos_rel;
_have_estimate = true;
_last_update_ms = AP_HAL::millis();
}
}
// handle_msg - Process a LANDING_TARGET mavlink message

View File

@ -4,6 +4,8 @@
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h>
#include <AP_InertialNav/AP_InertialNav.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <stdint.h>
// declare backend classes
class AC_PrecLand_Backend;
@ -33,42 +35,57 @@ public:
PRECLAND_TYPE_IRLOCK
};
// Constructor
// constructor
AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav);
// init - perform any required initialisation of landing controllers
// perform any required initialisation of landing controllers
void init();
// healthy - returns true if precision landing is healthy
// returns true if precision landing is healthy
bool healthy() { return _backend_state.healthy; }
// update - give chance to driver to get updates from sensor
// returns time of last update
uint32_t last_update_ms() { return _last_update_ms; }
// give chance to driver to get updates from sensor
void update(float alt_above_terrain_cm);
// get_target_shift - returns 3D vector of earth-frame position adjustments to target
// returns 3D vector of earth-frame position adjustments to target
Vector3f get_target_shift(const Vector3f& orig_target);
// handle_msg - Process a LANDING_TARGET mavlink message
// returns target position relative to origin
bool get_target_position(Vector3f& ret);
// returns target position relative to vehicle
bool get_target_position_relative(Vector3f& ret);
// returns target velocity relative to vehicle
bool get_target_velocity_relative(Vector3f& ret);
// returns true when the landing target has been detected
bool target_acquired();
// process a LANDING_TARGET mavlink message
void handle_msg(mavlink_message_t* msg);
// accessors for logging
bool enabled() const { return _enabled; }
const Vector2f& last_bf_angle_to_target() const { return _angle_to_target; }
const Vector2f& last_ef_angle_to_target() const { return _ef_angle_to_target; }
const Vector3f& last_target_pos_offset() const { return _target_pos_offset; }
const Vector3f& last_target_pos_offset() const { return _target_pos_rel; }
// parameter var table
static const struct AP_Param::GroupInfo var_info[];
private:
// calc_angles_and_pos - converts sensor's body-frame angles to earth-frame angles and position estimate
// converts sensor's body-frame angles to earth-frame angles and position estimate
// angles stored in _angle_to_target
// earth-frame angles stored in _ef_angle_to_target
// position estimate is stored in _target_pos
void calc_angles_and_pos(float alt_above_terrain_cm);
// get_behaviour - returns enabled parameter as an behaviour
// returns enabled parameter as an behaviour
enum PrecLandBehaviour get_behaviour() const { return (enum PrecLandBehaviour)(_enabled.get()); }
// references to inertial nav and ahrs libraries
@ -79,13 +96,15 @@ private:
AP_Int8 _enabled; // enabled/disabled and behaviour
AP_Int8 _type; // precision landing controller type
uint32_t _last_update_ms; // epoch time in millisecond when update is called
// output from sensor (stored for logging)
Vector2f _angle_to_target; // last raw sensor angle to target
Vector2f _ef_angle_to_target;// last earth-frame angle to target
// output from controller
bool _have_estimate; // true if we have a recent estimated position offset
Vector3f _target_pos_offset; // estimate target position offset from vehicle in earth-frame
// estimator output
Vector3f _target_pos_rel; // estimate target position relative to vehicle in NEU cm
Vector3f _target_pos; // estimate target position in NEU cm
// backend state
struct precland_state {