ardupilot/libraries/AP_Soaring/AP_Soaring.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

538 lines
19 KiB
C++
Raw Permalink Normal View History

#include "AP_Soaring.h"
2022-11-06 19:20:59 -04:00
#if HAL_SOARING_ENABLED
#include <AP_Logger/AP_Logger.h>
2022-11-06 19:20:59 -04:00
#include <AP_TECS/AP_TECS.h>
#include <GCS_MAVLink/GCS.h>
#include <stdint.h>
// ArduSoar parameters
const AP_Param::GroupInfo SoaringController::var_info[] = {
// @Param: ENABLE
// @DisplayName: Is the soaring mode enabled or not
// @Description: Toggles the soaring mode on and off
// @Values: 0:Disable,1:Enable
// @User: Advanced
AP_GROUPINFO_FLAGS("ENABLE", 1, SoaringController, soar_active, 0, AP_PARAM_FLAG_ENABLE),
// @Param: VSPEED
// @DisplayName: Vertical v-speed
// @Description: Rate of climb to trigger themalling speed
// @Units: m/s
// @Range: 0 10
// @User: Advanced
AP_GROUPINFO("VSPEED", 2, SoaringController, thermal_vspeed, 0.7f),
// @Param: Q1
// @DisplayName: Process noise
// @Description: Standard deviation of noise in process for strength
2020-06-02 08:03:02 -03:00
// @Range: 0.0001 0.01
// @User: Advanced
AP_GROUPINFO("Q1", 3, SoaringController, thermal_q1, 0.001f),
// @Param: Q2
// @DisplayName: Process noise
// @Description: Standard deviation of noise in process for position and radius
2020-06-02 08:03:02 -03:00
// @Range: 0.01 1
// @User: Advanced
AP_GROUPINFO("Q2", 4, SoaringController, thermal_q2, 0.03f),
// @Param: R
// @DisplayName: Measurement noise
// @Description: Standard deviation of noise in measurement
2020-06-02 08:03:02 -03:00
// @Range: 0.01 1
// @User: Advanced
AP_GROUPINFO("R", 5, SoaringController, thermal_r, 0.45f),
// @Param: DIST_AHEAD
// @DisplayName: Distance to thermal center
// @Description: Initial guess of the distance to the thermal center
// @Units: m
// @Range: 0 100
// @User: Advanced
AP_GROUPINFO("DIST_AHEAD", 6, SoaringController, thermal_distance_ahead, 5.0f),
// @Param: MIN_THML_S
// @DisplayName: Minimum thermalling time
// @Description: Minimum number of seconds to spend thermalling
// @Units: s
2020-06-02 08:03:02 -03:00
// @Range: 0 600
// @User: Advanced
AP_GROUPINFO("MIN_THML_S", 7, SoaringController, min_thermal_s, 20),
// @Param: MIN_CRSE_S
// @DisplayName: Minimum cruising time
// @Description: Minimum number of seconds to spend cruising
// @Units: s
2020-06-02 08:03:02 -03:00
// @Range: 0 600
// @User: Advanced
AP_GROUPINFO("MIN_CRSE_S", 8, SoaringController, min_cruise_s, 10),
// @Param: POLAR_CD0
// @DisplayName: Zero lift drag coef.
// @Description: Zero lift drag coefficient
2020-06-02 08:03:02 -03:00
// @Range: 0.005 0.5
// @User: Advanced
AP_GROUPINFO("POLAR_CD0", 9, SoaringController, _polarParams.CD0, 0.027),
// @Param: POLAR_B
// @DisplayName: Induced drag coeffient
// @Description: Induced drag coeffient
2020-06-02 08:03:02 -03:00
// @Range: 0.005 0.05
// @User: Advanced
AP_GROUPINFO("POLAR_B", 10, SoaringController, _polarParams.B, 0.031),
// @Param: POLAR_K
// @DisplayName: Cl factor
// @Description: Cl factor 2*m*g/(rho*S)
// @Units: m.m/s/s
2020-06-02 08:03:02 -03:00
// @Range: 20 400
// @User: Advanced
AP_GROUPINFO("POLAR_K", 11, SoaringController, _polarParams.K, 25.6),
// @Param: ALT_MAX
// @DisplayName: Maximum soaring altitude, relative to the home location
// @Description: Don't thermal any higher than this.
// @Units: m
2020-06-02 08:03:02 -03:00
// @Range: 0 5000.0
// @User: Advanced
AP_GROUPINFO("ALT_MAX", 12, SoaringController, alt_max, 350.0),
// @Param: ALT_MIN
// @DisplayName: Minimum soaring altitude, relative to the home location
// @Description: Don't get any lower than this.
// @Units: m
// @Range: 0 1000.0
// @User: Advanced
AP_GROUPINFO("ALT_MIN", 13, SoaringController, alt_min, 50.0),
// @Param: ALT_CUTOFF
// @DisplayName: Maximum power altitude, relative to the home location
// @Description: Cut off throttle at this alt.
// @Units: m
2020-06-02 08:03:02 -03:00
// @Range: 0 5000.0
// @User: Advanced
AP_GROUPINFO("ALT_CUTOFF", 14, SoaringController, alt_cutoff, 250.0),
// 15 was SOAR_ENABLE_CH, now RCX_OPTION
// @Param: MAX_DRIFT
// @DisplayName: (Optional) Maximum drift distance to allow when thermalling.
// @Description: The previous mode will be restored if the horizontal distance to the thermalling start location exceeds this value. -1 to disable.
// @Range: 0 1000
// @User: Advanced
AP_GROUPINFO("MAX_DRIFT", 16, SoaringController, max_drift, -1),
// @Param: MAX_RADIUS
// @DisplayName: (Optional) Maximum distance from home
// @Description: RTL will be entered when a thermal is exited and the plane is more than this distance from home. -1 to disable.
// @Range: 0 1000
// @User: Advanced
AP_GROUPINFO("MAX_RADIUS", 17, SoaringController, max_radius, -1),
// @Param: THML_BANK
// @DisplayName: Thermalling bank angle
// @Description: This parameter sets the bank angle to use when thermalling. Typically 30 - 45 degrees works well.
// @Range: 20 50
// @User: Advanced
// @Units: deg
AP_GROUPINFO("THML_BANK", 18, SoaringController, thermal_bank, 30.0),
// 19 reserved for POLAR_LEARN.
// @Param: THML_ARSPD
// @DisplayName: Specific setting for airspeed when soaring in THERMAL mode.
// @Description: If non-zero this airspeed will be used when thermalling. A value of 0 will use AIRSPEED_CRUISE.
// @Range: 0 50
// @User: Advanced
AP_GROUPINFO("THML_ARSPD", 20, SoaringController, soar_thermal_airspeed, 0),
// @Param: CRSE_ARSPD
// @DisplayName: Specific setting for airspeed when soaring in AUTO mode.
// @Description: If non-zero this airspeed will be used when cruising between thermals in AUTO. If set to -1, airspeed will be selected based on speed-to-fly theory. If set to 0, then AIRSPEED_CRUISE will be used while cruising between thermals.
// @Range: -1 50
// @User: Advanced
AP_GROUPINFO("CRSE_ARSPD", 21, SoaringController, soar_cruise_airspeed, 0),
// @Param: THML_FLAP
// @DisplayName: Flap percent to be used during thermalling flight.
// @Description: This sets the flap when in LOITER with soaring active. Overrides the usual auto flap behaviour.
// @Range: 0 100
// @User: Advanced
AP_GROUPINFO("THML_FLAP", 22, SoaringController, soar_thermal_flap, 0),
AP_GROUPEND
};
SoaringController::SoaringController(AP_TECS &tecs, const AP_FixedWing &parms) :
_tecs(tecs),
_vario(parms,_polarParams),
_speedToFly(_polarParams),
_aparm(parms),
_throttle_suppressed(true)
{
AP_Param::setup_object_defaults(this, var_info);
}
void SoaringController::get_target(Location &wp)
{
wp = AP::ahrs().get_home();
wp.offset(_position_x_filter.get(), _position_y_filter.get());
}
bool SoaringController::suppress_throttle()
{
float alt = _vario.alt;
if (_throttle_suppressed && (alt < alt_min)) {
// Time to throttle up
set_throttle_suppressed(false);
} else if ((!_throttle_suppressed) && (alt > alt_cutoff)) {
// Start glide
set_throttle_suppressed(true);
// Zero the pitch integrator - the nose is currently raised to climb, we need to go back to glide.
_tecs.reset_pitch_I();
_cruise_start_time_us = AP_HAL::micros64();
// Reset the filtered vario rate - it is currently elevated due to the climb rate and would otherwise take a while to fall again,
// leading to false positives.
_vario.reset_trigger_filter(0.0f);
}
return _throttle_suppressed;
}
bool SoaringController::check_thermal_criteria()
{
return (_last_update_status == ActiveStatus::AUTO_MODE_CHANGE
&& ((AP_HAL::micros64() - _cruise_start_time_us) > ((unsigned)min_cruise_s * 1e6))
&& (_vario.get_trigger_value() - _vario.get_exp_thermalling_sink()) > thermal_vspeed
&& _vario.alt < alt_max
&& _vario.alt > alt_min);
}
SoaringController::LoiterStatus SoaringController::check_cruise_criteria(Vector2f prev_wp, Vector2f next_wp)
{
// Check conditions for re-entering cruise. Note that the aircraft needs to also be aligned with the appropriate
// heading before some of these conditions will actually trigger.
// The GCS messages are emitted in mode_thermal.cpp. Update these if the logic here is changed.
if (_last_update_status == ActiveStatus::SOARING_DISABLED) {
return LoiterStatus::DISABLED;
}
LoiterStatus result = LoiterStatus::GOOD_TO_KEEP_LOITERING;
const float alt = _vario.alt;
if (_exit_commanded) {
result = LoiterStatus::EXIT_COMMANDED;
} else if (alt > alt_max) {
result = LoiterStatus::ALT_TOO_HIGH;
} else if (alt < alt_min) {
result = LoiterStatus::ALT_TOO_LOW;
} else if ((AP_HAL::micros64() - _thermal_start_time_us) > ((unsigned)min_thermal_s * 1e6)) {
const float mcCreadyAlt = McCready(alt);
if (_thermalability < mcCreadyAlt) {
result = LoiterStatus::THERMAL_WEAK;
} else if (alt < (-_thermal_start_pos.z) || _vario.get_filtered_climb() < 0.0) {
result = LoiterStatus::ALT_LOST;
} else if (check_drift(prev_wp, next_wp)) {
result = LoiterStatus::DRIFT_EXCEEDED;
}
}
return result;
}
void SoaringController::init_thermalling()
{
// Calc filter matrices - so that changes to parameters can be updated by switching in and out of thermal mode
float r = powf(thermal_r, 2); // Measurement noise
float cov_q1 = powf(thermal_q1, 2); // Process noise for strength
float cov_q2 = powf(thermal_q2, 2); // Process noise for position and radius
const float init_q[4] = {cov_q1,
cov_q2,
cov_q2,
cov_q2};
2017-03-01 00:12:12 -04:00
const MatrixN<float,4> q{init_q};
const float init_p[4] = {INITIAL_STRENGTH_COVARIANCE,
INITIAL_RADIUS_COVARIANCE,
INITIAL_POSITION_COVARIANCE,
INITIAL_POSITION_COVARIANCE};
2017-03-01 00:12:12 -04:00
const MatrixN<float,4> p{init_p};
Vector3f position;
const AP_AHRS &_ahrs = AP::ahrs();
if (!_ahrs.get_relative_position_NED_home(position)) {
return;
}
// New state vector filter will be reset. Thermal location is placed in front of a/c
const float init_xr[4] = {_vario.get_trigger_value(),
INITIAL_THERMAL_RADIUS,
position.x + thermal_distance_ahead * cosf(_ahrs.get_yaw()),
position.y + thermal_distance_ahead * sinf(_ahrs.get_yaw())};
const VectorN<float,4> xr{init_xr};
// Also reset covariance matrix p so filter is not affected by previous data
_ekf.reset(xr, p, q, r);
_prev_update_time = AP_HAL::micros64();
_thermal_start_time_us = AP_HAL::micros64();
_thermal_start_pos = position;
_vario.reset_climb_filter(0.0);
_position_x_filter.reset(_ekf.X[2]);
_position_y_filter.reset(_ekf.X[3]);
_exit_commanded = false;
}
void SoaringController::init_cruising()
{
if (_last_update_status >= ActiveStatus::MANUAL_MODE_CHANGE) {
_cruise_start_time_us = AP_HAL::micros64();
// Start glide. Will be updated on the next loop.
set_throttle_suppressed(true);
}
}
void SoaringController::update_thermalling()
{
float deltaT = (AP_HAL::micros64() - _prev_update_time) * 1e-6;
Vector3f current_position;
const AP_AHRS &_ahrs = AP::ahrs();
if (!_ahrs.get_relative_position_NED_home(current_position)) {
return;
}
Vector3f wind_drift = _ahrs.wind_estimate()*deltaT*_vario.get_filtered_climb()/_ekf.X[0];
// update the filter
_ekf.update(_vario.reading, current_position.x, current_position.y, wind_drift.x, wind_drift.y);
_thermalability = (_ekf.X[0]*expf(-powf(get_thermalling_radius()/_ekf.X[1], 2))) - _vario.get_exp_thermalling_sink();
_prev_update_time = AP_HAL::micros64();
// Compute smoothed estimate of position
_position_x_filter.set_cutoff_frequency(1/(3*_vario.tau));
_position_y_filter.set_cutoff_frequency(1/(3*_vario.tau));
_position_x_filter.apply(_ekf.X[2], deltaT);
_position_y_filter.apply(_ekf.X[3], deltaT);
#if HAL_LOGGING_ENABLED
// write log - save the data.
2020-04-05 21:44:21 -03:00
// @LoggerMessage: SOAR
// @Vehicles: Plane
// @Description: Logged data from soaring feature
// @URL: https://ardupilot.org/plane/docs/soaring.html
// @Field: TimeUS: microseconds since system startup
// @Field: nettorate: Estimate of vertical speed of surrounding airmass
// @Field: x0: Thermal strength estimate
// @Field: x1: Thermal radius estimate
// @Field: x2: Thermal position estimate north from home
// @Field: x3: Thermal position estimate east from home
// @Field: north: Aircraft position north from home
// @Field: east: Aircraft position east from home
// @Field: alt: Aircraft altitude
// @Field: dx_w: Wind speed north
// @Field: dy_w: Wind speed east
// @Field: th: Estimate of achievable climbrate in thermal
AP::logger().WriteStreaming("SOAR", "TimeUS,nettorate,x0,x1,x2,x3,north,east,alt,dx_w,dy_w,th", "Qfffffffffff",
AP_HAL::micros64(),
(double)_vario.reading,
(double)_ekf.X[0],
(double)_ekf.X[1],
(double)_ekf.X[2],
(double)_ekf.X[3],
current_position.x,
current_position.y,
(double)_vario.alt,
(double)wind_drift.x,
(double)wind_drift.y,
(double)_thermalability);
#endif
}
void SoaringController::update_cruising()
{
// Calculate the optimal airspeed for the current conditions of wind along current direction,
// expected lift in next thermal and filtered sink rate.
Vector3f wind = AP::ahrs().wind_estimate();
Vector3f wind_bf = AP::ahrs().earth_to_body(wind);
const float wx = wind_bf.x;
const float wz = _vario.get_stf_value();
// Constraints on the airspeed calculation.
const float CLmin = _polarParams.K/(_aparm.airspeed_max*_aparm.airspeed_max);
const float CLmax = _polarParams.K/(_aparm.airspeed_min*_aparm.airspeed_min);
// Update the calculation.
_speedToFly.update(wx, wz, thermal_vspeed, CLmin, CLmax);
#if HAL_LOGGING_ENABLED
AP::logger().WriteStreaming("SORC", "TimeUS,wx,wz,wexp,CLmin,CLmax,Vopt", "Qffffff",
AP_HAL::micros64(),
(double)wx,
(double)wz,
(double)thermal_vspeed,
(double)CLmin,
(double)CLmax,
(double)_speedToFly.speed_to_fly());
#endif
}
void SoaringController::update_vario()
{
_vario.update(thermal_bank);
}
float SoaringController::McCready(float alt)
{
// A method shell to be filled in later
return thermal_vspeed;
}
SoaringController::ActiveStatus SoaringController::active_state(bool override_disable) const
{
if (override_disable || !soar_active) {
return ActiveStatus::SOARING_DISABLED;
}
return _pilot_desired_state;
}
void SoaringController::update_active_state(bool override_disable)
{
ActiveStatus status = active_state(override_disable);
bool state_changed = !(status == _last_update_status);
if (state_changed) {
switch (status) {
case ActiveStatus::SOARING_DISABLED:
// It's not enabled, but was enabled on the last loop.
gcs().send_text(MAV_SEVERITY_INFO, "Soaring: Disabled.");
set_throttle_suppressed(false);
break;
case ActiveStatus::MANUAL_MODE_CHANGE:
// It's enabled, but wasn't on the last loop.
gcs().send_text(MAV_SEVERITY_INFO, "Soaring: Enabled, manual mode changes.");
break;
case ActiveStatus::AUTO_MODE_CHANGE:
gcs().send_text(MAV_SEVERITY_INFO, "Soaring: Enabled, automatic mode changes.");
break;
}
if (_last_update_status == ActiveStatus::SOARING_DISABLED) {
// We have switched from disabled into an active mode, start cruising.
init_cruising();
} else if (status != ActiveStatus::SOARING_DISABLED) {
// We switched between active modes. If we're in THERMAL this means we should exit gracefully.
// This has no effect if we're cruising as it is reset on thermal entry.
_exit_commanded = true;
}
}
_last_update_status = status;
}
void SoaringController::set_throttle_suppressed(bool suppressed)
{
_throttle_suppressed = suppressed;
// Let the TECS know.
_tecs.set_gliding_requested_flag(suppressed);
}
bool SoaringController::check_drift(Vector2f prev_wp, Vector2f next_wp)
{
// Check for -1 (disabled)
if (max_drift<0) {
return false;
}
// Check against the estimated thermal.
Vector2f position(_ekf.X[2], _ekf.X[3]);
Vector2f start_pos(_thermal_start_pos.x, _thermal_start_pos.y);
Vector2f mission_leg = next_wp - prev_wp;
if (prev_wp.is_zero() || mission_leg.length() < 0.1) {
// Simple check of distance from initial start point.
return (position - start_pos).length() > max_drift;
} else {
// Regard the effective start point as projected onto mission leg.
// Calculate drift parallel and perpendicular to mission leg.
// Drift parallel and in direction of mission leg is acceptable.
Vector2f effective_start, vec1, vec2;
// Calculate effective start point (on mission leg).
vec1 = (start_pos - prev_wp).projected(mission_leg);
effective_start = prev_wp + vec1;
// Calculate parallel and perpendicular offsets.
vec2 = position - effective_start;
float parallel = vec2 * mission_leg.normalized();
float perpendicular = (vec2 - mission_leg.normalized()*parallel).length();
// Check if we've drifted beyond the next wp.
if (parallel>(next_wp - effective_start).length()) {
return true;
}
// Check if we've drifted too far laterally or backwards. We don't count positive parallel offsets
// as these are favourable (towards next wp)
parallel = parallel>0 ? 0 : parallel;
return (powf(parallel,2)+powf(perpendicular,2)) > powf(max_drift,2);
}
}
float SoaringController::get_thermalling_radius() const
{
// Thermalling radius is controlled by parameter SOAR_THML_BANK and true target airspeed.
const float target_aspd = _tecs.get_target_airspeed() * AP::ahrs().get_EAS2TAS();
const float radius = (target_aspd*target_aspd) / (GRAVITY_MSS * tanf(thermal_bank*DEG_TO_RAD));
return radius;
}
float SoaringController::get_thermalling_target_airspeed()
{
return soar_thermal_airspeed;
}
float SoaringController::get_cruising_target_airspeed()
{
if (soar_cruise_airspeed<0) {
return _speedToFly.speed_to_fly();
}
return soar_cruise_airspeed;
}
#endif // HAL_SOARING_ENABLED