another change (to test_import.py, which simply imports the new file). I'm
checking this piece in now, though, to make it easier to distribute a patch
for x-platform checking.
NEEDS DOC CHANGES.
More AttributeErrors transmuted into TypeErrors, in test_b2.py, and,
again, this strikes me as a good thing.
This checkin completes the iterator generalization work that obviously
needed to be done. Can anyone think of others that should be changed?
safely together and don't duplicate logic (the common logic was factored
out into new private API function _PySequence_IterContains()).
Visible change:
some_complex_number in some_instance
no longer blows up if some_instance has __getitem__ but neither
__contains__ nor __iter__. test_iter changed to ensure that remains true.
NEEDS DOC CHANGES
A few more AttributeErrors turned into TypeErrors, but in test_contains
this time.
The full story for instance objects is pretty much unexplainable, because
instance_contains() tries its own flavor of iteration-based containment
testing first, and PySequence_Contains doesn't get a chance at it unless
instance_contains() blows up. A consequence is that
some_complex_number in some_instance
dies with a TypeError unless some_instance.__class__ defines __iter__ but
does not define __getitem__.
to string.join(), so that when the latter figures out in midstream that
it really needs unicode.join() instead, unicode.join() can actually get
all the sequence elements (i.e., there's no guarantee that the sequence
passed to string.join() can be iterated over *again* by unicode.join(),
so string.join() must not pass on the original sequence object anymore).
NEEDS DOC CHANGES.
This one surprised me! While I expected tuple() to be a no-brainer, turns
out it's actually dripping with consequences:
1. It will *allow* the popular PySequence_Fast() to work with any iterable
object (code for that not yet checked in, but should be trivial).
2. It caused two std tests to fail. This because some places used
PyTuple_Sequence() (the C spelling of tuple()) as an indirect way to test
whether something *is* a sequence. But tuple() code only looked for the
existence of sq->item to determine that, and e.g. an instance passed
that test whether or not it supported the other operations tuple()
needed (e.g., __len__). So some things the tests *expected* to fail
with an AttributeError now fail with a TypeError instead. This looks
like an improvement to me; e.g., test_coercion used to produce 559
TypeErrors and 2 AttributeErrors, and now they're all TypeErrors. The
error details are more informative too, because the places calling this
were *looking* for TypeErrors in order to replace the generic tuple()
"not a sequence" msg with their own more specific text, and
AttributeErrors snuck by that.
NEEDS DOC CHANGES.
Possibly contentious: The first time s.next() yields StopIteration (for
a given map argument s) is the last time map() *tries* s.next(). That
is, if other sequence args are longer, s will never again contribute
anything but None values to the result, even if trying s.next() again
could yield another result. This is the same behavior map() used to have
wrt IndexError, so it's the only way to be wholly backward-compatible.
I'm not a fan of letting StopIteration mean "try again later" anyway.
to no longer insist that len(seq) be defined.
NEEDS DOC CHANGES.
This is meant to be a model for how other functions of this ilk (max,
filter, etc) can be generalized similarly. Feel encouraged to grab your
favorite and convert it!
Note some cute consequences:
list(file) == file.readlines() == list(file.xreadlines())
list(dict) == dict.keys()
list(dict.iteritems()) = dict.items()
list(xrange(i, j, k)) == range(i, j, k)
The new test case demonstrates the bug. Be more careful in
symtable_resolve_free() to add a var to cells or frees only if it
won't be added under some other rule.
XXX Add new assertion that will catch this bug.
of ParserCreate().
Added assignment tests for the ordered_attributes and specified_attributes
values, similar to the checks for the returns_unicode attribute.
I know some people don't like this -- if it's really controversial,
I'll take it out again. (If it's only Alex Martelli who doesn't like
it, that doesn't count as "real controversial" though. :-)
That's why this is a separate checkin from the iterators stuff I'm
about to check in next.
The changes cause compilation failures in any file in the Python
installation lib directory to cause the install to fail. It looks
like compileall.py intended to behave this way, but a change to
py_compile.py and a separate bug defeated it.
Fixes SF bug #412436
This change affects the test suite, which contains several files that
contain intentional errors. The solution is to extend compileall.py
with the ability to skip compilation of selected files.
In the test suite, rename nocaret.py and test_future[3..7].py to start
with badsyntax_nocaret.py and badsyntax_future[3..7].py. Update the
makefile to skip compilation of these files. Update the tests to use
the name names for imports.
NB compileall.py is changed so that compile_dir() returns success only
if all recursive calls to compile_dir() also check success.
than from module pickletester. Using the latter turned out to cause
the test to break when invoked as "import test.test_pickle" or "import
test.autotest".
now raises NameError instead of UnboundLocalError, because the var in
question is definitely not local. (This affects test_scope.py)
Also update the recent fix by Ping using get_func_name(). Replace
tests of get_func_name() return value with call to get_func_desc() to
match all the other uses.
fixes bug #414940, and redoes the fix for #129417 in a different way.
It also fixes a number of other problems with locale-specific formatting:
If there is leading or trailing spaces, then no grouping should be applied
in the spaces, and the total length of the string should not be changed
due to grouping.
Also added test case which works only if the en_US locale is available.
"%#x" % 0
blew up, at heart because C sprintf supplies a base marker if and only if
the value is not 0. I then fixed that, by tolerating C's inconsistency
when it does %#x, and taking away that *Python* produced 0x0 when
formatting 0L (the "long" flavor of 0) under %#x itself. But after talking
with Guido, we agreed it would be better to supply 0x for the short int
case too, despite that it's inconsistent with C, because C is inconsistent
with itself and with Python's hex(0) (plus, while "%#x" % 0 didn't work
before, "%#x" % 0L *did*, and returned "0x0"). Similarly for %#X conversion.
http://sourceforge.net/tracker/index.php?func=detail&aid=415514&group_id=5470&atid=105470
For short ints, Python defers to the platform C library to figure out what
%#x should do. The code asserted that the platform C returned a string
beginning with "0x". However, that's not true when-- and only when --the
*value* being formatted is 0. Changed the code to live with C's inconsistency
here. In the meantime, the problem does not arise if you format a long 0 (0L)
instead. However, that's because the code *we* wrote to do %#x conversions on
longs produces a leading "0x" regardless of value. That's probably wrong too:
we should drop leading "0x", for consistency with C, when (& only when) formatting
0L. So I changed the long formatting code to do that too.
catch IOError as well as OverflowError. I found that on Tru64 Unix
this was raised; probably because the OS (or libc) doesn't support
large files but the architecture is 64 bits!
bugs on sizeof(long)==8 machines. pickle.py has no idea what it's
doing with very large ints, and variously gets things right by accident,
computes nonsense, or generates corrupt pickles. cPickle fails on
cases 2**31 <= i < 2**32: since it *thinks* those are 4-byte ints
(the "high 4 bytes" are all zeroes), it stores them in the (signed!) BININT
format, so they get unpickled as negative values.
integers, but the std tests don't exercise most of them. Repair that.
CAUTION: I expect this to fail on boxes with sizeof(long)==8, in the
part of test_cpickle (but not test_pickle) trying to do a binary mode
(not text mode) load of the embedded BINDATA pickle string. Once that
hypothesized failure is confirmed, I'll fix cPickle.c.