Fix clang ubsan (undefined behavior sanitizer) warnings in dictobject.c by
adjusting how the internal struct _dictkeysobject shared keys structure is
declared.
This remains ABI compatible. We get rid of the union at the end of the
struct being used for conveinence to avoid typecasting in favor of char[]
variable length array at the end of a struct. This is known to clang to be
used for variable sized objects and will not cause an undefined behavior
problem. Similarly, char arrays do not have strict aliasing undefined
behavior when cast.
PEP-007 does not currently list variable length arrays (VLAs) as allowed
in our subset of C99. If this turns out to be a problem, the fix to this is
to change the char `dk_indices[]` into `dk_indices[1]` and restore the
three size computation subtractions this change removes:
`- Py_MEMBER_SIZE(PyDictKeysObject, dk_indices)`
If this works as is I'll make a separate PR to update PEP-007.
(cherry picked from commit 397f1b28c4)
This code doesn't have effect on the final result, but causes
GCC 8 warnings and can have an undefined behavior.
(cherry picked from commit 827d49f3cf)
Multi-phase initialized modules allow m_traverse to be called while the
module is still being initialized, so module authors may need to account
for that.
(cherry picked from commit c2b0b12d1a)
Co-authored-by: Marcel Plch <gmarcel.plch@gmail.com>
Fix typos found by codespell in docs, docstrings, and comments.
(cherry picked from commit c3d9508ff2)
Co-authored-by: Leo Arias <leo.arias@canonical.com>
The commit removes one unnecessary "if" clause in genobject.c. That "if" clause was masking un-awaited coroutines warnings just to make writing unittests more convenient.
Better account for single-line compound statements and
semi-colon separated statements when suggesting
Py3 replacements for Py2 print statements.
Initial patch by Nitish Chandra.
dictview_repr(): Use a Py_ReprEnter() / Py_ReprLeave() pair to check
for recursion, and produce "..." if so.
test_recursive_repr(): Check for the string rather than a
RecursionError. (Test cannot be any tighter as contents are
implementation-dependent.)
test_deeply_nested_repr(): Add new test, replacing the original
test_recursive_repr(). It checks that a RecursionError is raised in
the case of a non-recursive but deeply nested structure. (Very
similar to what test_repr_deep() in test/test_dict.py does for a
normal dict.)
OrderedDictTests: Add new test case, to test behavior on OrderedDict
instances containing their own values() or items().
* Add coro.cr_origin and sys.set_coroutine_origin_tracking_depth
* Use coroutine origin information in the unawaited coroutine warning
* Stop using set_coroutine_wrapper in asyncio debug mode
* In BaseEventLoop.set_debug, enable debugging in the correct thread
The suggested replacement for print statements previously failed to account
for leading whitespace and hence could end up including unwanted text in
the proposed call to the print builtin.
Patch by Sanyam Khurana.
AttributeError was raised always when attribute is not found.
This commit skip raising AttributeError when `tp_getattro` is `PyObject_GenericGetAttr`.
It makes hasattr() and getattr() about 4x faster when attribute is not found.
Modify locale.localeconv(), time.tzname, os.strerror() and other
functions to ignore the UTF-8 Mode: always use the current locale
encoding.
Changes:
* Add _Py_DecodeLocaleEx() and _Py_EncodeLocaleEx(). On decoding or
encoding error, they return the position of the error and an error
message which are used to raise Unicode errors in
PyUnicode_DecodeLocale() and PyUnicode_EncodeLocale().
* Replace _Py_DecodeCurrentLocale() with _Py_DecodeLocaleEx().
* PyUnicode_DecodeLocale() now uses _Py_DecodeLocaleEx() for all
cases, especially for the strict error handler.
* Add _Py_DecodeUTF8Ex(): return more information on decoding error
and supports the strict error handler.
* Rename _Py_EncodeUTF8_surrogateescape() to _Py_EncodeUTF8Ex().
* Replace _Py_EncodeCurrentLocale() with _Py_EncodeLocaleEx().
* Ignore the UTF-8 mode to encode/decode localeconv(), strerror()
and time zone name.
* Remove PyUnicode_DecodeLocale(), PyUnicode_DecodeLocaleAndSize()
and PyUnicode_EncodeLocale() now ignore the UTF-8 mode: always use
the "current" locale.
* Remove _PyUnicode_DecodeCurrentLocale(),
_PyUnicode_DecodeCurrentLocaleAndSize() and
_PyUnicode_EncodeCurrentLocale().
Add new fuctions ignoring the UTF-8 mode:
* _Py_DecodeCurrentLocale()
* _Py_EncodeCurrentLocale()
* _PyUnicode_DecodeCurrentLocaleAndSize()
* _PyUnicode_EncodeCurrentLocale()
Modify the readline module to use these functions.
Re-enable test_readline.test_nonascii().
Replace Py_EncodeLocale() with _Py_EncodeLocaleRaw() in:
* _Py_wfopen()
* _Py_wreadlink()
* _Py_wrealpath()
* _Py_wstat()
* pymain_open_filename()
These functions are called early during Python intialization, only
the RAW memory allocator must be used.
Py_EncodeLocale() now uses _Py_EncodeUTF8_surrogateescape(), instead
of using temporary unicode and bytes objects. So Py_EncodeLocale()
doesn't use the Python C API anymore.
* Add -X utf8 command line option, PYTHONUTF8 environment variable
and a new sys.flags.utf8_mode flag.
* If the LC_CTYPE locale is "C" at startup: enable automatically the
UTF-8 mode.
* Add _winapi.GetACP(). encodings._alias_mbcs() now calls
_winapi.GetACP() to get the ANSI code page
* locale.getpreferredencoding() now returns 'UTF-8' in the UTF-8
mode. As a side effect, open() now uses the UTF-8 encoding by
default in this mode.
* Py_DecodeLocale() and Py_EncodeLocale() now use the UTF-8 encoding
in the UTF-8 Mode.
* Update subprocess._args_from_interpreter_flags() to handle -X utf8
* Skip some tests relying on the current locale if the UTF-8 mode is
enabled.
* Add test_utf8mode.py.
* _Py_DecodeUTF8_surrogateescape() gets a new optional parameter to
return also the length (number of wide characters).
* pymain_get_global_config() and pymain_set_global_config() now
always copy flag values, rather than only copying if the new value
is greater than the old value.
The error messages in `object.__new__` and `object.__init__` now aim
to point the user more directly at the name of the class being instantiated
in cases where they *haven't* been overridden (on the assumption that
the actual problem is a missing `__new__` or `__init__` definition in the
class body).
When they *have* been overridden, the errors still report themselves as
coming from object, on the assumption that the problem is with the call
up to the base class in the method implementation, rather than with the
way the constructor is being called.