Make the design more object-oriented.
Split _GenericAlias on two almost independent classes: for special
generic aliases like List and for parametrized generic aliases like List[int].
Add specialized subclasses for Callable, Callable[...], Tuple and Union[...].
When Python is built with experimental isolated interpreters, disable
the list free list.
Temporary workaround until this cache is made per-interpreter.
When Python is built with experimental isolated interpreters, a
garbage collection now does nothing in an isolated interpreter.
Temporary workaround until subinterpreters stop sharing Python
objects.
When Python is built with experimental isolated interpreters, disable
the type method cache.
Temporary workaround until the cache is made per-interpreter.
In the experimental isolated subinterpreters build mode, the GIL is
now per-interpreter.
Move gil from _PyRuntimeState.ceval to PyInterpreterState.ceval.
new_interpreter() always get the config from the main interpreter.
In the experimental isolated subinterpreters build mode,
_PyThreadState_GET() gets the autoTSSkey variable and
_PyThreadState_Swap() sets the autoTSSkey variable.
* Add _PyThreadState_GetTSS()
* _PyRuntimeState_GetThreadState() and _PyThreadState_GET()
return _PyThreadState_GetTSS()
* PyEval_SaveThread() sets the autoTSSkey variable to current Python
thread state rather than NULL.
* eval_frame_handle_pending() doesn't check that
_PyThreadState_Swap() result is NULL.
* _PyThreadState_Swap() gets the current Python thread state with
_PyThreadState_GetTSS() rather than
_PyRuntimeGILState_GetThreadState().
* PyGILState_Ensure() no longer checks _PyEval_ThreadsInitialized()
since it cannot access the current interpreter.
When Python is built with experimental isolated interpreters, disable
tuple, dict and free free lists.
Temporary workaround until these caches are made per-interpreter.
Add frame_alloc() and frame_get_builtins() subfunctions to simplify
_PyFrame_New_NoTrack().
When Python is built in the experimental isolated subinterpreters
mode, disable Unicode singletons and Unicode interned strings since
they are shared by all interpreters.
Temporary workaround until these caches are made per-interpreter.
_PyErr_ChainExceptions() now ensures that the first parameter is an
exception type, as done by _PyErr_SetObject().
* The following function now check PyExceptionInstance_Check() in an
assertion using a new _PyBaseExceptionObject_cast() helper
function:
* PyException_GetTraceback(), PyException_SetTraceback()
* PyException_GetCause(), PyException_SetCause()
* PyException_GetContext(), PyException_SetContext()
* PyExceptionClass_Name() now checks PyExceptionClass_Check() with an
assertion.
* Remove XXX comment and add gi_exc_state variable to _gen_throw().
* Remove comment from test_generators
Move recursion_limit member from _PyRuntimeState.ceval to
PyInterpreterState.ceval.
* Py_SetRecursionLimit() now only sets _Py_CheckRecursionLimit
of ceval.c if the current Python thread is part of the main
interpreter.
* Inline _Py_MakeEndRecCheck() into _Py_LeaveRecursiveCall().
* Convert _Py_RecursionLimitLowerWaterMark() macro into a static
inline function.
Add --with-experimental-isolated-subinterpreters build option to
configure: better isolate subinterpreters, experimental build mode.
When used, force the usage of the libc malloc() memory allocator,
since pymalloc relies on the unique global interpreter lock (GIL).
Due to backwards compatibility concerns regarding keywords immediately followed by a string without whitespace between them (like in `bg="#d00" if clear else"#fca"`) will fail to parse,
commit 41d5b94af4 has to be reverted.
When parsing things like `def f(*): pass` the old parser used to output `SyntaxError: named arguments must follow bare *`, which the new parser wasn't able to do.
Due to PyErr_Occurred not being called at the beginning of each rule, we need to set the error indicator, so that rules do not get expanded after an exception has been thrown