cpython/Lib/collections.py

307 lines
12 KiB
Python
Raw Normal View History

2007-10-23 17:37:41 -03:00
__all__ = ['deque', 'defaultdict', 'namedtuple']
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
# They should however be considered an integral part of collections.py.
from _abcoll import *
import _abcoll
__all__ += _abcoll.__all__
from _collections import deque, defaultdict
2007-03-01 02:16:43 -04:00
from operator import itemgetter as _itemgetter
2007-10-16 18:28:32 -03:00
from keyword import iskeyword as _iskeyword
2007-03-01 02:16:43 -04:00
import sys as _sys
import heapq as _heapq
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
########################################################################
### namedtuple #######################################################
2007-03-01 02:16:43 -04:00
2007-10-23 17:37:41 -03:00
def namedtuple(typename, field_names, verbose=False):
2007-03-01 02:16:43 -04:00
"""Returns a new subclass of tuple with named fields.
2007-10-23 17:37:41 -03:00
>>> Point = namedtuple('Point', 'x y')
>>> Point.__doc__ # docstring for the new class
2007-03-01 02:16:43 -04:00
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
2007-03-01 02:16:43 -04:00
33
>>> x, y = p # unpack like a regular tuple
2007-03-01 02:16:43 -04:00
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessable by name
2007-03-01 02:16:43 -04:00
33
2007-12-13 22:49:47 -04:00
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
2007-03-01 02:16:43 -04:00
Point(x=11, y=22)
2007-12-13 22:49:47 -04:00
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)
2007-03-01 02:16:43 -04:00
"""
2008-01-07 22:02:05 -04:00
# Parse and validate the field names. Validation serves two purposes,
# generating informative error messages and preventing template injection attacks.
if isinstance(field_names, basestring):
2007-10-08 07:11:51 -03:00
field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
field_names = tuple(map(str, field_names))
2007-10-16 16:18:30 -03:00
for name in (typename,) + field_names:
if not all(c.isalnum() or c=='_' for c in name):
2007-10-16 16:18:30 -03:00
raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
2007-10-16 18:28:32 -03:00
if _iskeyword(name):
raise ValueError('Type names and field names cannot be a keyword: %r' % name)
2007-10-16 16:18:30 -03:00
if name[0].isdigit():
raise ValueError('Type names and field names cannot start with a number: %r' % name)
2007-10-08 22:36:23 -03:00
seen_names = set()
for name in field_names:
2007-12-13 22:49:47 -04:00
if name.startswith('_'):
raise ValueError('Field names cannot start with an underscore: %r' % name)
2007-10-08 22:36:23 -03:00
if name in seen_names:
2007-10-16 16:18:30 -03:00
raise ValueError('Encountered duplicate field name: %r' % name)
2007-10-08 22:36:23 -03:00
seen_names.add(name)
# Create and fill-in the class template
numfields = len(field_names)
argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes
reprtxt = ', '.join('%s=%%r' % name for name in field_names)
dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names))
template = '''class %(typename)s(tuple):
2007-12-14 14:08:20 -04:00
'%(typename)s(%(argtxt)s)' \n
__slots__ = () \n
_fields = %(field_names)r \n
def __new__(cls, %(argtxt)s):
2007-12-14 14:08:20 -04:00
return tuple.__new__(cls, (%(argtxt)s)) \n
@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
'Make a new %(typename)s object from a sequence or iterable'
result = new(cls, iterable)
if len(result) != %(numfields)d:
raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
return result \n
def __repr__(self):
2007-12-14 14:08:20 -04:00
return '%(typename)s(%(reprtxt)s)' %% self \n
def _asdict(t):
2007-12-14 14:08:20 -04:00
'Return a new dict which maps field names to their values'
return {%(dicttxt)s} \n
2007-12-13 22:49:47 -04:00
def _replace(self, **kwds):
'Return a new %(typename)s object replacing specified fields with new values'
result = self._make(map(kwds.pop, %(field_names)r, self))
if kwds:
raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
return result \n
def __getnewargs__(self):
return tuple(self) \n\n''' % locals()
for i, name in enumerate(field_names):
template += ' %s = property(itemgetter(%d))\n' % (name, i)
if verbose:
print template
# Execute the template string in a temporary namespace and
# support tracing utilities by setting a value for frame.f_globals['__name__']
namespace = dict(itemgetter=_itemgetter, __name__='namedtuple_%s' % typename)
try:
2007-10-08 07:11:51 -03:00
exec template in namespace
except SyntaxError, e:
raise SyntaxError(e.message + ':\n' + template)
2007-10-08 07:11:51 -03:00
result = namespace[typename]
# For pickling to work, the __module__ variable needs to be set to the frame
# where the named tuple is created. Bypass this step in enviroments where
# sys._getframe is not defined (Jython for example).
if hasattr(_sys, '_getframe'):
result.__module__ = _sys._getframe(1).f_globals['__name__']
return result
########################################################################
### Counter ##########################################################
class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values.
>>> c = Counter('abracadabra') # count elements from a string
>>> c.most_common(3) # three most common elements
[('a', 5), ('r', 2), ('b', 2)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'r']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbcdrr'
>>> sum(c.values()) # total of all counts
11
>>> c['a'] # count of letter 'a'
5
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
7
>>> del c['r'] # remove all 'r'
>>> c['r'] # now there are zero 'r'
0
>>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a'
9
>>> c.clear() # empty the counter
>>> c
Counter()
Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared:
>>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)]
'''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3
def __init__(self, iterable=None):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts.
>>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
'''
self.update(iterable)
def __missing__(self, key):
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0
def most_common(self, n=None):
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts.
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
'''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
def elements(self):
'''Iterator over elements repeating each as many times as its count.
>>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']
# Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product
1836
Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it.
'''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
# Override dict methods where necessary
@classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
def update(self, iterable=None):
'''Like dict.update() but add counts instead of replacing them.
Source can be an iterable, a dictionary, or another Counter instance.
>>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch
4
'''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we look to Knuth for suggested operations on
# multisets and implement the union-add operation discussed in
# TAOCP Volume II section 4.6.3 exercise 19. The Wikipedia entry for
# multisets calls that operation a sum or join.
if iterable is not None:
if isinstance(iterable, Mapping):
for elem, count in iterable.iteritems():
self[elem] += count
else:
for elem in iterable:
self[elem] += 1
def copy(self):
'Like dict.copy() but returns a Counter instance instead of a dict.'
return Counter(self)
def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items)
2007-03-01 02:16:43 -04:00
if __name__ == '__main__':
# verify that instances can be pickled
2007-03-01 02:16:43 -04:00
from cPickle import loads, dumps
2007-10-23 17:37:41 -03:00
Point = namedtuple('Point', 'x, y', True)
2007-03-01 02:16:43 -04:00
p = Point(x=10, y=20)
assert p == loads(dumps(p))
# test and demonstrate ability to override methods
class Point(namedtuple('Point', 'x y')):
__slots__ = ()
@property
def hypot(self):
return (self.x ** 2 + self.y ** 2) ** 0.5
def __str__(self):
2008-01-10 19:00:01 -04:00
return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
for p in Point(3, 4), Point(14, 5/7.):
print p
class Point(namedtuple('Point', 'x y')):
'Point class with optimized _make() and _replace() without error-checking'
__slots__ = ()
_make = classmethod(tuple.__new__)
def _replace(self, _map=map, **kwds):
return self._make(_map(kwds.get, ('x', 'y'), self))
print Point(11, 22)._replace(x=100)
Point3D = namedtuple('Point3D', Point._fields + ('z',))
print Point3D.__doc__
2007-03-01 02:16:43 -04:00
import doctest
2007-10-23 17:37:41 -03:00
TestResults = namedtuple('TestResults', 'failed attempted')
2007-03-01 02:16:43 -04:00
print TestResults(*doctest.testmod())