Jetpack/kernel/nvidia/drivers/soc/tegra/tegra-ppm.c
dchvs 75c7968d30 Add Jetpack 4.4.1 sources
Jetson Xavier NX, Jetson TX2 Series, Jetson AGX Xavier Series, Jetson Nano, Jetson TX1 [L4T 32.4.4]
2021-01-19 20:45:17 -06:00

853 lines
22 KiB
C

/*
* Copyright (c) 2011-2016, NVIDIA CORPORATION. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/clk.h>
#include <linux/hashtable.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <soc/tegra/tegra-ppm.h>
#define for_each_fv_entry(fv, fve) \
for (fve = fv->table + fv->size - 1; fve >= fv->table; fve--)
struct fv_relation {
struct mutex lock;
/*
* private data for the lookup_voltage() callback
* normally it will be "struct clk*"
*/
void *c;
int (*lookup_voltage)(void*, unsigned long);
ssize_t max_size;
int freq_step;
unsigned int max_freq;
unsigned int min_freq;
ssize_t size;
struct fv_entry {
unsigned int freq;
int voltage_mv;
} *table;
};
struct maxf_cache_entry {
u32 budget;
s16 temp_c;
u8 cores;
u8 units;
unsigned maxf;
struct hlist_node nib; /* next in bucket*/
};
struct tegra_ppm {
const char *name;
struct fv_relation *fv;
struct tegra_ppm_params *params;
int iddq_ma;
DECLARE_HASHTABLE(maxf_cache, 7);
struct mutex lock;
struct dentry *debugfs_dir;
#ifdef CONFIG_DEBUG_FS
/*
* Used in debug fs:
* set following parameters manually,
* then query total_ma or total_mw.
*/
struct {
s32 temp_c;
u32 volt_mv;
u32 freq_hz;
u32 cores;
u32 iddq_ma;
} model_query;
/*
* Used in debug fs:
* set following parameters manually,
* then query ma_limited_hz or mw_limited_hz.
*/
struct {
s32 temp_c;
u32 cores;
u32 iddq_ma;
u32 budget;
} cap_query;
#endif
};
static int fv_relation_update(struct fv_relation *fv)
{
int ret = 0;
unsigned int f, maxf, minf;
struct fv_entry *fve;
mutex_lock(&fv->lock);
maxf = fv->max_freq;
minf = fv->min_freq;
fv->size = (maxf - minf) / fv->freq_step + 1;
if (fv->size > fv->max_size) {
pr_warn("%s: fv->table ought to be bigger (%zu > %zu)\n",
__func__, fv->size, fv->max_size);
fv->size = fv->max_size;
}
f = maxf;
for_each_fv_entry(fv, fve) {
fve->freq = f;
fve->voltage_mv = fv->lookup_voltage(fv->c, fve->freq);
if (fve->voltage_mv < 0) {
int mv = (f == maxf ? INT_MAX : fve[1].voltage_mv);
pr_warn("%s: failure %d. guessing %dmV for %dHz\n",
__func__, fve->voltage_mv, mv, fve->freq);
fve->voltage_mv = mv;
ret = -ENODATA;
}
f -= fv->freq_step;
}
mutex_unlock(&fv->lock);
return ret;
}
/**
* fv_relation_create() - build a voltage/frequency table for a clock
* @c : private driver data that can be used by the client in conjunction
* with the lookup_voltage() function pointer.
* @freq_step : step size between frequency points in Hz
* @max_size : max number of frequency/voltage entries
* @lookup_voltage : callback to get the minimium voltage for a frequency
*
* fv_relation_create constructs a voltage/frequency table for a given
* clock. The table has evenly spaced frequencies from 0Hz to the maximum
* rate of the clock.
*
* Return: pointer to the the newly created &struct fv_relation on
* success. -%ENOMEM or -%EINVAL for the usual reasons. -%ENODATA if
* a call to @lookup_voltage or clk_round_rate fails
*/
struct fv_relation *fv_relation_create(void *c, int freq_step,
ssize_t max_size, unsigned int max_freq, unsigned int min_freq,
int (*lookup_voltage)(void *, unsigned long))
{
int ret = 0;
struct fv_relation *result;
struct fv_entry *table;
if (WARN_ON(!c || !lookup_voltage || freq_step <= 0))
return ERR_PTR(-EINVAL);
result = kzalloc(sizeof(struct fv_relation), GFP_KERNEL);
table = kzalloc(sizeof(struct fv_entry[max_size]), GFP_KERNEL);
if (!result || !table) {
kfree(result);
kfree(table);
return ERR_PTR(-ENOMEM);
}
mutex_init(&result->lock);
result->c = c;
result->lookup_voltage = lookup_voltage;
result->freq_step = freq_step;
result->max_size = max_size;
result->max_freq = max_freq;
result->min_freq = min_freq;
result->table = table;
ret = fv_relation_update(result);
if (ret) {
kfree(result->table);
kfree(result);
result = ERR_PTR(ret);
}
return result;
}
EXPORT_SYMBOL_GPL(fv_relation_create);
/**
* fv_relation_destroy() - inverse of fv_relation_create
* @fv : pointer to the &struct fv_relation to be destroyed
*
* Free the resources created by a previous call to fv_relation_create
*/
void fv_relation_destroy(struct fv_relation *fv)
{
if (fv)
kfree(fv->table);
kfree(fv);
}
EXPORT_SYMBOL_GPL(fv_relation_destroy);
static inline s64 _pow(s64 val, int pwr)
{
s64 retval = val ? 1 : 0;
while (val && pwr) {
if (pwr & 1)
retval *= val;
pwr >>= 1;
if (pwr)
val *= val;
}
return retval;
}
static s64 calc_leakage_calc_step(struct tegra_ppm_params *common,
int iddq_ma, int temp_c, unsigned voltage_mv,
int i, int j, int k)
{
s64 leakage_calc_step;
leakage_calc_step = common->leakage_consts_ijk[i][j][k];
/* iddq raised to i */
for (; i; i--) {
leakage_calc_step *= iddq_ma;
/* Convert (mA) to (A) */
leakage_calc_step = div64_s64(leakage_calc_step, 1000);
}
leakage_calc_step = div64_s64(leakage_calc_step, _pow(1000, i));
/* voltage raised to j */
leakage_calc_step *= _pow(voltage_mv, j);
/* Convert (mV)^j to (V)^j */
leakage_calc_step = div64_s64(leakage_calc_step, _pow(1000, j));
/* temp raised to k */
leakage_calc_step *= _pow(temp_c, k);
/* Convert (C)^k to (dC)^k */
leakage_calc_step = div64_s64(leakage_calc_step,
_pow(10, k));
return leakage_calc_step;
}
static s64 calc_leakage_ma(struct tegra_ppm_params *common,
int iddq_ma, int temp_c,
unsigned int voltage_mv, int cores)
{
int i, j, k;
s64 leakage_ma = 0;
for (i = 0; i <= 3; i++)
for (j = 0; j <= 3; j++)
for (k = 0; k <= 3; k++)
leakage_ma +=
calc_leakage_calc_step(
common, iddq_ma,
temp_c, voltage_mv, i, j, k);
/* leakage model coefficients were pre-scaled */
leakage_ma = div64_s64(leakage_ma, common->ijk_scaled);
/* scale leakage based on number of cores */
leakage_ma *= common->leakage_consts_n[cores - 1];
leakage_ma = div64_s64(leakage_ma, 1000);
/* set floor for leakage current */
if (leakage_ma <= common->leakage_min)
leakage_ma = common->leakage_min;
return leakage_ma;
}
static s64 calc_dynamic_ma(struct tegra_ppm_params *common,
unsigned int voltage_mv, int cores,
unsigned int freq_khz)
{
s64 dyn_ma;
/* Convert freq to MHz */
dyn_ma = voltage_mv * freq_khz / 1000;
/* Convert mV to V */
dyn_ma = div64_s64(dyn_ma, 1000);
dyn_ma *= common->dyn_consts_n[cores - 1];
/* dyn_const_n was in fF, convert it to nF */
dyn_ma = div64_s64(dyn_ma, 1000000);
return dyn_ma;
}
static s64 calc_total_ma(struct tegra_ppm_params *params,
int iddq_ma, int temp_c,
unsigned int voltage_mv, int cores,
unsigned int freq_khz)
{
s64 leak = calc_leakage_ma(params, iddq_ma,
temp_c, voltage_mv, cores);
s64 dyn = calc_dynamic_ma(params, voltage_mv,
cores, freq_khz);
return leak + dyn;
}
static s64 calc_total_mw(struct tegra_ppm_params *params,
int iddq_ma, int temp_c,
unsigned int voltage_mv, int cores,
unsigned int freq_khz)
{
s64 cur_ma = calc_total_ma(params, iddq_ma, temp_c,
voltage_mv, cores, freq_khz);
return div64_s64(cur_ma * voltage_mv, 1000);
}
static unsigned int calculate_maxf(
struct tegra_ppm_params *params,
struct fv_relation *fv, int cores,
unsigned int budget, int units, int temp_c, int iddq_ma)
{
unsigned int voltage_mv, freq_khz = 0;
struct fv_entry *fve;
s64 val = 0;
mutex_lock(&fv->lock);
for_each_fv_entry(fv, fve) {
freq_khz = fve->freq / 1000;
voltage_mv = fve->voltage_mv;
if (units == TEGRA_PPM_UNITS_MILLIWATTS)
val = calc_total_mw(params, iddq_ma, temp_c,
voltage_mv, cores, freq_khz);
else if (units == TEGRA_PPM_UNITS_MILLIAMPS)
val = calc_total_ma(params, iddq_ma, temp_c,
voltage_mv, cores, freq_khz);
if (val <= budget)
goto end;
freq_khz = 0;
}
end:
mutex_unlock(&fv->lock);
return freq_khz;
}
#define make_key(budget, units, temp_c, ncores) \
((ncores<<24) ^ (units<<23) ^ (budget << 8) ^ temp_c)
static unsigned get_maxf_locked(struct tegra_ppm *ctx, unsigned limit,
int units, int temp_c, int cores)
{
unsigned maxf;
struct maxf_cache_entry *me;
u32 key = make_key(limit, units, temp_c, cores);
if ((WARN(cores < 0 || cores > ctx->params->n_cores,
"power model can't handle %d cores", cores))
|| (WARN(units != TEGRA_PPM_UNITS_MILLIAMPS &&
units != TEGRA_PPM_UNITS_MILLIWATTS,
"illegal value for units (%d)", units)))
return 0;
/* check cache */
hash_for_each_possible(ctx->maxf_cache, me, nib, key)
if (me->budget == limit && me->temp_c == temp_c &&
me->cores == cores && me->units == units) {
maxf = me->maxf;
return maxf;
}
/* service a miss */
maxf = calculate_maxf(ctx->params,
ctx->fv,
cores,
limit,
units,
temp_c,
ctx->iddq_ma);
/* best effort to cache the result */
me = kzalloc(sizeof(*me), GFP_KERNEL);
if (!IS_ERR_OR_NULL(me)) {
me->budget = limit;
me->units = units;
me->temp_c = temp_c;
me->maxf = maxf;
me->cores = cores;
hash_add(ctx->maxf_cache, &me->nib, key);
}
return maxf;
}
/**
* tegra_ppm_get_maxf() - query maximum allowable frequency given a budget
* @ctx : the power model to query
* @units: %TEGRA_PPM_MILLIWATTS or %TEGRA_PPM_MILLIAMPS
* @limit : the budget
* @temp_c : the temperature in degrees C
* @cores : the number of "cores" consuming power
*
* If the result has not been previously memoized, compute and memoize
* the maximum allowable frequency give a power model (@ctx), a budget
* (@limit, in mA or mW as specified by @units), a temperature
* (temp_c, in degrees Celcius), and the number of active cores
* (@cores).
*
* Return: If the value of cores is outside the model's expected range, 0.
* Otherwise, the (previously) computed frequency in Hz.
*/
unsigned tegra_ppm_get_maxf(struct tegra_ppm *ctx, unsigned int limit,
int units, int temp_c, int cores)
{
unsigned ret;
mutex_lock(&ctx->lock);
ret = get_maxf_locked(ctx, limit, units, temp_c, cores);
mutex_unlock(&ctx->lock);
return ret;
}
/**
* tegra_ppm_drop_cache() - eliminate memoized data for a struct tegra_ppm
* @ctx
*
* Discards previously memoized results from tegra_ppm_get_maxf. Also,
* recomputes the v/f curve for the &struct fv_relation used during the creation
* of @ctx. Typically called when by the holder of a &struct tegra_ppm pointer
* when the underlying v/f operating curve has changed.
*
*/
void tegra_ppm_drop_cache(struct tegra_ppm *ctx)
{
int bucket;
struct hlist_node *tmp;
struct maxf_cache_entry *me;
mutex_lock(&ctx->lock);
hash_for_each_safe(ctx->maxf_cache, bucket, tmp, me, nib) {
hash_del(&me->nib);
kfree(me);
}
WARN_ON(fv_relation_update(ctx->fv));
mutex_unlock(&ctx->lock);
}
EXPORT_SYMBOL_GPL(tegra_ppm_drop_cache);
#ifdef CONFIG_DEBUG_FS
static int total_ma_show(void *data, u64 *val)
{
struct tegra_ppm *ctx = data;
int cores = ctx->model_query.cores;
if (cores <= 0 || cores > ctx->params->n_cores)
return -EINVAL;
mutex_lock(&ctx->lock);
*val = calc_total_ma(ctx->params, ctx->model_query.iddq_ma,
ctx->model_query.temp_c, ctx->model_query.volt_mv,
ctx->model_query.cores,
ctx->model_query.freq_hz / 1000);
mutex_unlock(&ctx->lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(total_ma_fops, total_ma_show, NULL, "%llu\n");
static int total_mw_show(void *data, u64 *val)
{
struct tegra_ppm *ctx = data;
int cores = ctx->model_query.cores;
if (cores <= 0 || cores > ctx->params->n_cores)
return -EINVAL;
mutex_lock(&ctx->lock);
*val = calc_total_mw(ctx->params, ctx->model_query.iddq_ma,
ctx->model_query.temp_c, ctx->model_query.volt_mv,
ctx->model_query.cores,
ctx->model_query.freq_hz / 1000);
mutex_unlock(&ctx->lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(total_mw_fops, total_mw_show, NULL, "%llu\n");
static int show_ma_limited_hz(void *data, u64 *val)
{
struct tegra_ppm *ctx = data;
int cores = ctx->cap_query.cores;
if (cores <= 0 || cores > ctx->params->n_cores)
return -EINVAL;
*val = tegra_ppm_get_maxf(ctx, ctx->cap_query.budget,
TEGRA_PPM_UNITS_MILLIAMPS,
ctx->cap_query.temp_c,
ctx->cap_query.cores);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(ma_limited_hz_fops, show_ma_limited_hz, NULL, "%llu\n");
static int show_mw_limited_hz(void *data, u64 *val)
{
struct tegra_ppm *ctx = data;
int cores = ctx->cap_query.cores;
if (cores <= 0 || cores > ctx->params->n_cores)
return -EINVAL;
*val = tegra_ppm_get_maxf(ctx, ctx->cap_query.budget,
TEGRA_PPM_UNITS_MILLIWATTS,
ctx->cap_query.temp_c,
ctx->cap_query.cores);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(mw_limited_hz_fops, show_mw_limited_hz, NULL, "%llu\n");
static int ppm_cache_show(struct seq_file *s, void *data)
{
int bucket;
struct maxf_cache_entry *me;
struct tegra_ppm *ctx = s->private;
seq_printf(s, "%10s %5s %10s %10s %10s\n",
"budget", "units", "temp['C]", "cores[#]", "fmax [Hz]");
hash_for_each(ctx->maxf_cache, bucket, me, nib)
seq_printf(s, "%10d %5s %10d %10d %10d\n",
me->budget,
me->units == TEGRA_PPM_UNITS_MILLIAMPS ? "mA" : "mW",
me->temp_c, me->cores, me->maxf);
return 0;
}
static ssize_t ppm_cache_poison(struct file *f, const char __user *buf,
size_t sz, loff_t *off)
{
struct tegra_ppm *ctx = f->f_inode->i_private;
tegra_ppm_drop_cache(ctx);
return sz;
}
static int ppm_cache_open(struct inode *inode, struct file *file)
{
return single_open(file, ppm_cache_show, inode->i_private);
}
static const struct file_operations ppm_cache_fops = {
.open = ppm_cache_open,
.read = seq_read,
.write = ppm_cache_poison,
.release = single_release,
};
static struct dentry *ppm_debugfs_dir(void)
{
static struct mutex lock = __MUTEX_INITIALIZER(lock);
static struct dentry *base_dir;
mutex_lock(&lock);
if (IS_ERR_OR_NULL(base_dir))
base_dir = debugfs_create_dir("tegra_ppm", NULL);
mutex_unlock(&lock);
return base_dir;
}
static int model_debugfs_init(struct tegra_ppm *ctx, struct dentry *parent)
{
parent = debugfs_create_dir("query_model", parent);
if (IS_ERR_OR_NULL(parent))
return PTR_ERR(parent);
debugfs_create_u32("temp_c", S_IRUSR | S_IWUSR, parent,
&ctx->model_query.temp_c);
debugfs_create_u32("volt_mv", S_IRUSR | S_IWUSR, parent,
&ctx->model_query.volt_mv);
debugfs_create_u32("freq_hz", S_IRUSR | S_IWUSR, parent,
&ctx->model_query.freq_hz);
debugfs_create_u32("cores", S_IRUSR | S_IWUSR, parent,
&ctx->model_query.cores);
debugfs_create_u32("iddq_ma", S_IRUSR | S_IWUSR, parent,
&ctx->model_query.iddq_ma);
debugfs_create_file("total_ma", S_IRUSR, parent, ctx,
&total_ma_fops);
debugfs_create_file("total_mw", S_IRUSR, parent, ctx,
&total_mw_fops);
return 0;
}
static int cap_debugfs_init(struct tegra_ppm *ctx, struct dentry *parent)
{
parent = debugfs_create_dir("query_cap", parent);
if (IS_ERR_OR_NULL(parent))
return PTR_ERR(parent);
debugfs_create_u32("temp_c", S_IRUSR | S_IWUSR, parent,
&ctx->cap_query.temp_c);
debugfs_create_u32("cores", S_IRUSR | S_IWUSR, parent,
&ctx->cap_query.cores);
debugfs_create_u32("iddq_ma", S_IRUSR | S_IWUSR, parent,
&ctx->cap_query.iddq_ma);
debugfs_create_u32("budget", S_IRUSR | S_IWUSR, parent,
&ctx->cap_query.budget);
debugfs_create_file("ma_limited_hz", S_IRUSR, parent, ctx,
&ma_limited_hz_fops);
debugfs_create_file("mw_limited_hz", S_IRUSR, parent, ctx,
&mw_limited_hz_fops);
return 0;
}
static int ppm_debugfs_init(struct tegra_ppm *ctx,
struct dentry *parent)
{
if (!parent) {
parent = ppm_debugfs_dir();
if (IS_ERR_OR_NULL(parent))
return PTR_ERR(parent);
parent = debugfs_create_dir(ctx->name, parent);
} else {
char buf[32];
snprintf(buf, sizeof(buf), "ppm.%s", ctx->name);
parent = debugfs_create_dir(buf, parent);
}
if (IS_ERR_OR_NULL(parent))
return PTR_ERR(parent);
ctx->debugfs_dir = parent;
debugfs_create_file("ppm_cache", S_IRUSR | S_IWUSR, parent,
ctx, &ppm_cache_fops);
debugfs_create_u32_array("vf_lut", S_IRUSR, parent,
(u32 *)ctx->fv->table, 2*ctx->fv->size);
debugfs_create_u32("iddq_ma", S_IRUSR, parent,
&ctx->iddq_ma);
model_debugfs_init(ctx, parent);
cap_debugfs_init(ctx, parent);
return 0;
}
#else
static int ppm_debugfs_init(struct tegra_ppm *ctx
struct dentry *parent)
{ return 0; }
#endif /* CONFIG_DEBUG_FS */
/**
* of_read_tegra_ppm_params() - read PPM parameters from device tree
* @np : the device tree node containing the PPM information
*
* Allocate a &struct tegra_ppm_params. Populate it according to the
* device tree properties in *@np.
*
* If this function succeeds, the caller is responsible for
* (eventually) calling kfree on the returned result.
*
* Return: on success, a pointer to thew new &struct
* tegra_ppm_params. -%EINVAL or -%EDOM for device tree content
* errors. %NULL or other errors for a kzalloc failure.
*/
struct tegra_ppm_params *of_read_tegra_ppm_params(struct device_node *np)
{
int ret;
int n_dyn, n_leak, n_coeff;
struct tegra_ppm_params *params;
if (!np)
return ERR_PTR(-EINVAL);
n_dyn = of_property_count_u32_elems(np, "nvidia,tegra-ppm-cdyn");
if (n_dyn <= 0) {
pr_warn("%s: missing required property nvidia,tegra-ppm-cdyn\n",
__func__);
return ERR_PTR(-EINVAL);
} else if (n_dyn > TEGRA_PPM_MAX_CORES) {
pr_warn("%s: can't handle nvidia,tegra-ppm-cdyn of length %d\n",
__func__, n_dyn);
return ERR_PTR(-EDOM);
}
n_coeff = of_property_count_u32_elems(np,
"nvidia,tegra-ppm-leakage_coeffs");
if (n_coeff <= 0) {
pr_warn("%s: missing required property %s\n",
__func__, "nvidia,tegra-ppm-leakage_coeffs");
return ERR_PTR(-EINVAL);
} else if (n_coeff != 64) {
pr_warn("%s: expected nvidia,tegra-ppm-cdyn length 64, not %d\n",
__func__, n_coeff);
return ERR_PTR(-EDOM);
}
n_leak = of_property_count_u32_elems(np,
"nvidia,tegra-ppm-leakage_weights");
if ((n_dyn == 1) ? (n_leak > 1) : (n_leak != n_dyn)) {
pr_warn("__func__: nvidia,tegra-ppm-leakage_weights required but invalid\n");
return ERR_PTR(-EINVAL);
}
params = kzalloc(sizeof(struct tegra_ppm_params), GFP_KERNEL);
if (IS_ERR_OR_NULL(params))
return params;
params->n_cores = n_dyn;
ret = (of_property_read_u32_array(
np, "nvidia,tegra-ppm-cdyn",
(u32 *)&params->dyn_consts_n, params->n_cores)
|| of_property_read_u32_array(
np, "nvidia,tegra-ppm-leakage_coeffs",
(u32 *)&params->leakage_consts_ijk, 4 * 4 * 4));
WARN_ON(ret); /* this shouldn't happen */
if (ret)
goto err;
if (n_leak < 0)
params->leakage_consts_n[0] = 1000;
else
ret = of_property_read_u32_array(
np, "nvidia,tegra-ppm-leakage_weights",
(u32 *)&params->leakage_consts_n, params->n_cores);
WARN_ON(ret); /* this shouldn't happen */
if (ret)
goto err;
if (of_property_read_u32(np, "nvidia,tegra-ppm-min_leakage",
&params->leakage_min))
params->leakage_min = 0;
if (of_property_read_u32(np, "nvidia,tegra-ppm-coeff_scale",
&params->ijk_scaled))
params->ijk_scaled = 100000;
return params;
err:
kfree(params);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(of_read_tegra_ppm_params);
/**
* tegra_ppm_create() - build a processor power model
* @name : a name for this model to use in debugfs
* @fv : relation between frequency and minimum allowable voltage
* @params : parameters for the active and leakage power calculations
* @iddq_ma : the quiescent current of the voltage domain
* @debugfs_dir : optional location for debugfs nodes
*
* Construct a processor power model which supports querying the maximum
* allowable frequency (for a given temperature) within a current (mA)
* budget.
*
* Return: pointer to the the newly created &struct tegra_ppm on
* success. -%EINVAL if name, fv, or params doesn't point to anything.
* -%ENOMEM on memory allocation failure.
*/
struct tegra_ppm *tegra_ppm_create(const char *name,
struct fv_relation *fv,
struct tegra_ppm_params *params,
int iddq_ma,
struct dentry *debugfs_dir)
{
struct tegra_ppm *result;
if (IS_ERR_OR_NULL(name) || IS_ERR_OR_NULL(fv) ||
IS_ERR_OR_NULL(params))
return ERR_PTR(-EINVAL);
result = kzalloc(sizeof(struct tegra_ppm), GFP_KERNEL);
if (!result)
return ERR_PTR(-ENOMEM);
mutex_init(&result->lock);
result->name = name;
result->fv = fv;
result->params = params;
result->iddq_ma = iddq_ma;
ppm_debugfs_init(result, debugfs_dir);
return result;
}
EXPORT_SYMBOL_GPL(tegra_ppm_create);
/**
* tegra_ppm_destroy() - inverse of tegra_ppm_create
* @doomed : pointer to struct to destroy
* @pfv : receptable for @doomed's fv_relation pointer
* @pparams : receptable for @doomed's tegra_ppm_params pointer
*
* Reverse the operations done by tegra_ppm create resulting in the
* deallocation of struct *@doomed. If @doomed is NULL, nothing is
* deallocated.
*
* If @pfv is non-NULL *@pfv is set to value passed to
* tegra_ppm_create as fv. Callers may use that value to destroy an
* fv_relation. Similarly for @pparams and the value passed to
* tegra_ppm_create as params.
*
* if @doomed is %NULL, *@pfv and *@pparams will still be set to %NULL
*
*/
void tegra_ppm_destroy(struct tegra_ppm *doomed,
struct fv_relation **pfv,
struct tegra_ppm_params **pparams)
{
if (pfv)
*pfv = doomed ? doomed->fv : NULL;
if (pparams)
*pparams = doomed ? doomed->params : NULL;
if (!doomed)
return;
debugfs_remove_recursive(doomed->debugfs_dir);
kfree(doomed);
}
EXPORT_SYMBOL_GPL(tegra_ppm_destroy);