forked from rrcarlosr/Jetpack
dchvs
75c7968d30
Jetson Xavier NX, Jetson TX2 Series, Jetson AGX Xavier Series, Jetson Nano, Jetson TX1 [L4T 32.4.4]
921 lines
24 KiB
C
921 lines
24 KiB
C
/*
|
|
* Inter-VM Communication
|
|
*
|
|
* Copyright (C) 2014-2016, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public License
|
|
* version 2. This program is licensed "as is" without any warranty of any
|
|
* kind, whether express or implied.
|
|
*
|
|
*/
|
|
|
|
#include <linux/tegra-ivc.h>
|
|
#include <linux/tegra-ivc-instance.h>
|
|
#include <linux/module.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/err.h>
|
|
#include <asm/compiler.h>
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline void ivc_rmb(void)
|
|
{
|
|
smp_rmb();
|
|
}
|
|
|
|
static inline void ivc_wmb(void)
|
|
{
|
|
smp_wmb();
|
|
}
|
|
|
|
static inline void ivc_mb(void)
|
|
{
|
|
smp_mb();
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void ivc_rmb(void)
|
|
{
|
|
rmb();
|
|
}
|
|
|
|
static inline void ivc_wmb(void)
|
|
{
|
|
wmb();
|
|
}
|
|
|
|
static inline void ivc_mb(void)
|
|
{
|
|
mb();
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* IVC channel reset protocol.
|
|
*
|
|
* Each end uses its tx_channel.state to indicate its synchronization state.
|
|
*/
|
|
enum ivc_state {
|
|
/*
|
|
* This value is zero for backwards compatibility with services that
|
|
* assume channels to be initially zeroed. Such channels are in an
|
|
* initially valid state, but cannot be asynchronously reset, and must
|
|
* maintain a valid state at all times.
|
|
*
|
|
* The transmitting end can enter the established state from the sync or
|
|
* ack state when it observes the receiving endpoint in the ack or
|
|
* established state, indicating that has cleared the counters in our
|
|
* rx_channel.
|
|
*/
|
|
ivc_state_established = 0,
|
|
|
|
/*
|
|
* If an endpoint is observed in the sync state, the remote endpoint is
|
|
* allowed to clear the counters it owns asynchronously with respect to
|
|
* the current endpoint. Therefore, the current endpoint is no longer
|
|
* allowed to communicate.
|
|
*/
|
|
ivc_state_sync,
|
|
|
|
/*
|
|
* When the transmitting end observes the receiving end in the sync
|
|
* state, it can clear the w_count and r_count and transition to the ack
|
|
* state. If the remote endpoint observes us in the ack state, it can
|
|
* return to the established state once it has cleared its counters.
|
|
*/
|
|
ivc_state_ack
|
|
};
|
|
|
|
/*
|
|
* This structure is divided into two-cache aligned parts, the first is only
|
|
* written through the tx_channel pointer, while the second is only written
|
|
* through the rx_channel pointer. This delineates ownership of the cache lines,
|
|
* which is critical to performance and necessary in non-cache coherent
|
|
* implementations.
|
|
*/
|
|
struct ivc_channel_header {
|
|
union {
|
|
struct {
|
|
/* fields owned by the transmitting end */
|
|
uint32_t w_count;
|
|
uint32_t state;
|
|
};
|
|
uint8_t w_align[IVC_ALIGN];
|
|
};
|
|
union {
|
|
/* fields owned by the receiving end */
|
|
uint32_t r_count;
|
|
uint8_t r_align[IVC_ALIGN];
|
|
};
|
|
};
|
|
|
|
static inline void ivc_invalidate_counter(struct ivc *ivc,
|
|
dma_addr_t handle)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_cpu(ivc->peer_device, handle, IVC_ALIGN,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void ivc_flush_counter(struct ivc *ivc, dma_addr_t handle)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_device(ivc->peer_device, handle, IVC_ALIGN,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
static inline int ivc_channel_empty(struct ivc *ivc,
|
|
struct ivc_channel_header *ch)
|
|
{
|
|
/*
|
|
* This function performs multiple checks on the same values with
|
|
* security implications, so create snapshots with ACCESS_ONCE() to
|
|
* ensure that these checks use the same values.
|
|
*/
|
|
uint32_t w_count = ACCESS_ONCE(ch->w_count);
|
|
uint32_t r_count = ACCESS_ONCE(ch->r_count);
|
|
|
|
/*
|
|
* Perform an over-full check to prevent denial of service attacks where
|
|
* a server could be easily fooled into believing that there's an
|
|
* extremely large number of frames ready, since receivers are not
|
|
* expected to check for full or over-full conditions.
|
|
*
|
|
* Although the channel isn't empty, this is an invalid case caused by
|
|
* a potentially malicious peer, so returning empty is safer, because it
|
|
* gives the impression that the channel has gone silent.
|
|
*/
|
|
if (w_count - r_count > ivc->nframes)
|
|
return 1;
|
|
|
|
return w_count == r_count;
|
|
}
|
|
|
|
static inline int ivc_channel_full(struct ivc *ivc,
|
|
struct ivc_channel_header *ch)
|
|
{
|
|
/*
|
|
* Invalid cases where the counters indicate that the queue is over
|
|
* capacity also appear full.
|
|
*/
|
|
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)
|
|
>= ivc->nframes;
|
|
}
|
|
|
|
static inline uint32_t ivc_channel_avail_count(struct ivc *ivc,
|
|
struct ivc_channel_header *ch)
|
|
{
|
|
/*
|
|
* This function isn't expected to be used in scenarios where an
|
|
* over-full situation can lead to denial of service attacks. See the
|
|
* comment in ivc_channel_empty() for an explanation about special
|
|
* over-full considerations.
|
|
*/
|
|
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
|
|
}
|
|
|
|
static inline void ivc_advance_tx(struct ivc *ivc)
|
|
{
|
|
ACCESS_ONCE(ivc->tx_channel->w_count) =
|
|
ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
|
|
|
|
if (ivc->w_pos == ivc->nframes - 1)
|
|
ivc->w_pos = 0;
|
|
else
|
|
ivc->w_pos++;
|
|
}
|
|
|
|
static inline void ivc_advance_rx(struct ivc *ivc)
|
|
{
|
|
ACCESS_ONCE(ivc->rx_channel->r_count) =
|
|
ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
|
|
|
|
if (ivc->r_pos == ivc->nframes - 1)
|
|
ivc->r_pos = 0;
|
|
else
|
|
ivc->r_pos++;
|
|
}
|
|
|
|
static inline int ivc_check_read(struct ivc *ivc)
|
|
{
|
|
/*
|
|
* tx_channel->state is set locally, so it is not synchronized with
|
|
* state from the remote peer. The remote peer cannot reset its
|
|
* transmit counters until we've acknowledged its synchronization
|
|
* request, so no additional synchronization is required because an
|
|
* asynchronous transition of rx_channel->state to ivc_state_ack is not
|
|
* allowed.
|
|
*/
|
|
if (ivc->tx_channel->state != ivc_state_established)
|
|
return -ECONNRESET;
|
|
|
|
/*
|
|
* Avoid unnecessary invalidations when performing repeated accesses to
|
|
* an IVC channel by checking the old queue pointers first.
|
|
* Synchronization is only necessary when these pointers indicate empty
|
|
* or full.
|
|
*/
|
|
if (!ivc_channel_empty(ivc, ivc->rx_channel))
|
|
return 0;
|
|
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
|
|
}
|
|
|
|
static inline int ivc_check_write(struct ivc *ivc)
|
|
{
|
|
if (ivc->tx_channel->state != ivc_state_established)
|
|
return -ECONNRESET;
|
|
|
|
if (!ivc_channel_full(ivc, ivc->tx_channel))
|
|
return 0;
|
|
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
|
|
}
|
|
|
|
int tegra_ivc_can_read(struct ivc *ivc)
|
|
{
|
|
return ivc_check_read(ivc) == 0;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_can_read);
|
|
|
|
int tegra_ivc_can_write(struct ivc *ivc)
|
|
{
|
|
return ivc_check_write(ivc) == 0;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_can_write);
|
|
|
|
int tegra_ivc_tx_empty(struct ivc *ivc)
|
|
{
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
return ivc_channel_empty(ivc, ivc->tx_channel);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_tx_empty);
|
|
|
|
uint32_t tegra_ivc_tx_frames_available(struct ivc *ivc)
|
|
{
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
return ivc->nframes - (ACCESS_ONCE(ivc->tx_channel->w_count) -
|
|
ACCESS_ONCE(ivc->tx_channel->r_count));
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_tx_frames_available);
|
|
|
|
static void *ivc_frame_pointer(struct ivc *ivc, struct ivc_channel_header *ch,
|
|
uint32_t frame)
|
|
{
|
|
BUG_ON(frame >= ivc->nframes);
|
|
return (void *)((uintptr_t)(ch + 1) + ivc->frame_size * frame);
|
|
}
|
|
|
|
static inline dma_addr_t ivc_frame_handle(struct ivc *ivc,
|
|
dma_addr_t channel_handle, uint32_t frame)
|
|
{
|
|
BUG_ON(!ivc->peer_device);
|
|
BUG_ON(frame >= ivc->nframes);
|
|
return channel_handle + sizeof(struct ivc_channel_header) +
|
|
ivc->frame_size * frame;
|
|
}
|
|
|
|
static inline void ivc_invalidate_frame(struct ivc *ivc,
|
|
dma_addr_t channel_handle, unsigned frame, int offset, int len)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_cpu(ivc->peer_device,
|
|
ivc_frame_handle(ivc, channel_handle, frame) + offset,
|
|
len, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void ivc_flush_frame(struct ivc *ivc, dma_addr_t channel_handle,
|
|
unsigned frame, int offset, int len)
|
|
{
|
|
if (!ivc->peer_device)
|
|
return;
|
|
dma_sync_single_for_device(ivc->peer_device,
|
|
ivc_frame_handle(ivc, channel_handle, frame) + offset,
|
|
len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static int ivc_read_frame(struct ivc *ivc, void *buf, void __user *user_buf,
|
|
size_t max_read)
|
|
{
|
|
const void *src;
|
|
int result;
|
|
|
|
BUG_ON(buf && user_buf);
|
|
|
|
if (max_read > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_read(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Order observation of w_pos potentially indicating new data before
|
|
* data read.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0, max_read);
|
|
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
|
|
|
/*
|
|
* When compiled with optimizations, different versions of this
|
|
* function should be inlined into tegra_ivc_read_frame() or
|
|
* tegra_ivc_read_frame_user(). This should ensure that the user
|
|
* version does not add overhead to the kernel version.
|
|
*/
|
|
if (buf) {
|
|
memcpy(buf, src, max_read);
|
|
} else if (user_buf) {
|
|
if (copy_to_user(user_buf, src, max_read))
|
|
return -EFAULT;
|
|
} else
|
|
BUG();
|
|
|
|
ivc_advance_rx(ivc);
|
|
ivc_flush_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
/*
|
|
* Ensure our write to r_pos occurs before our read from w_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from full to non-full.
|
|
* The available count can only asynchronously increase, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
|
|
ivc->notify(ivc);
|
|
|
|
return (int)max_read;
|
|
}
|
|
|
|
int tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read)
|
|
{
|
|
return ivc_read_frame(ivc, buf, NULL, max_read);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_read);
|
|
|
|
int tegra_ivc_read_user(struct ivc *ivc, void __user *buf, size_t max_read)
|
|
{
|
|
return ivc_read_frame(ivc, NULL, buf, max_read);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_read_user);
|
|
|
|
/* peek in the next rx buffer at offset off, the count bytes */
|
|
int tegra_ivc_read_peek(struct ivc *ivc, void *buf, size_t off, size_t count)
|
|
{
|
|
const void *src;
|
|
int result;
|
|
|
|
if (off > ivc->frame_size || off + count > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_read(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Order observation of w_pos potentially indicating new data before
|
|
* data read.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, off, count);
|
|
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
|
|
|
memcpy(buf, (void *)((uintptr_t)src + off), count);
|
|
|
|
/* note, no interrupt is generated */
|
|
|
|
return (int)count;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_read_peek);
|
|
|
|
/* directly peek at the next frame rx'ed */
|
|
void *tegra_ivc_read_get_next_frame(struct ivc *ivc)
|
|
{
|
|
int result = ivc_check_read(ivc);
|
|
if (result)
|
|
return ERR_PTR(result);
|
|
|
|
/*
|
|
* Order observation of w_pos potentially indicating new data before
|
|
* data read.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0,
|
|
ivc->frame_size);
|
|
return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
|
|
|
|
int tegra_ivc_read_advance(struct ivc *ivc)
|
|
{
|
|
/*
|
|
* No read barriers or synchronization here: the caller is expected to
|
|
* have already observed the channel non-empty. This check is just to
|
|
* catch programming errors.
|
|
*/
|
|
int result = ivc_check_read(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
ivc_advance_rx(ivc);
|
|
ivc_flush_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
/*
|
|
* Ensure our write to r_pos occurs before our read from w_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from full to non-full.
|
|
* The available count can only asynchronously increase, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
|
|
ivc->notify(ivc);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_read_advance);
|
|
|
|
static int ivc_write_frame(struct ivc *ivc, const void *buf,
|
|
const void __user *user_buf, size_t size)
|
|
{
|
|
void *p;
|
|
int result;
|
|
|
|
BUG_ON(buf && user_buf);
|
|
|
|
if (size > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_write(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
|
|
|
/*
|
|
* When compiled with optimizations, different versions of this
|
|
* function should be inlined into tegra_ivc_write_frame() or
|
|
* tegra_ivc_write_frame_user(). This should ensure that the user
|
|
* version does not add overhead to the kernel version.
|
|
*/
|
|
if (buf) {
|
|
memcpy(p, buf, size);
|
|
} else if (user_buf) {
|
|
if (copy_from_user(p, user_buf, size))
|
|
return -EFAULT;
|
|
} else
|
|
BUG();
|
|
|
|
memset(p + size, 0, ivc->frame_size - size);
|
|
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, size);
|
|
|
|
/*
|
|
* Ensure that updated data is visible before the w_pos counter
|
|
* indicates that it is ready.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
ivc_advance_tx(ivc);
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Ensure our write to w_pos occurs before our read from r_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from empty to non-empty.
|
|
* The available count can only asynchronously decrease, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
|
|
ivc->notify(ivc);
|
|
|
|
return (int)size;
|
|
}
|
|
|
|
int tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size)
|
|
{
|
|
return ivc_write_frame(ivc, buf, NULL, size);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_write);
|
|
|
|
int tegra_ivc_write_user(struct ivc *ivc, const void __user *user_buf,
|
|
size_t size)
|
|
{
|
|
return ivc_write_frame(ivc, NULL, user_buf, size);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_write_user);
|
|
|
|
/* poke in the next tx buffer at offset off, the count bytes */
|
|
int tegra_ivc_write_poke(struct ivc *ivc, const void *buf, size_t off,
|
|
size_t count)
|
|
{
|
|
void *dest;
|
|
int result;
|
|
|
|
if (off > ivc->frame_size || off + count > ivc->frame_size)
|
|
return -E2BIG;
|
|
|
|
result = ivc_check_write(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
dest = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
|
memcpy(dest + off, buf, count);
|
|
|
|
return (int)count;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_write_poke);
|
|
|
|
/* directly poke at the next frame to be tx'ed */
|
|
void *tegra_ivc_write_get_next_frame(struct ivc *ivc)
|
|
{
|
|
int result = ivc_check_write(ivc);
|
|
if (result)
|
|
return ERR_PTR(result);
|
|
|
|
return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
|
|
|
|
/* advance the tx buffer */
|
|
int tegra_ivc_write_advance(struct ivc *ivc)
|
|
{
|
|
int result = ivc_check_write(ivc);
|
|
if (result)
|
|
return result;
|
|
|
|
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, ivc->frame_size);
|
|
|
|
/*
|
|
* Order any possible stores to the frame before update of w_pos.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
ivc_advance_tx(ivc);
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Ensure our write to w_pos occurs before our read from r_pos.
|
|
*/
|
|
ivc_mb();
|
|
|
|
/*
|
|
* Notify only upon transition from empty to non-empty.
|
|
* The available count can only asynchronously decrease, so the
|
|
* worst possible side-effect will be a spurious notification.
|
|
*/
|
|
ivc_invalidate_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, r_count));
|
|
|
|
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
|
|
ivc->notify(ivc);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_write_advance);
|
|
|
|
void tegra_ivc_channel_reset(struct ivc *ivc)
|
|
{
|
|
ivc->tx_channel->state = ivc_state_sync;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
ivc->notify(ivc);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_channel_reset);
|
|
|
|
/*
|
|
* ===============================================================
|
|
* IVC State Transition Table - see tegra_ivc_channel_notified()
|
|
* ===============================================================
|
|
*
|
|
* local remote action
|
|
* ----- ------ -----------------------------------
|
|
* SYNC EST <none>
|
|
* SYNC ACK reset counters; move to EST; notify
|
|
* SYNC SYNC reset counters; move to ACK; notify
|
|
* ACK EST move to EST; notify
|
|
* ACK ACK move to EST; notify
|
|
* ACK SYNC reset counters; move to ACK; notify
|
|
* EST EST <none>
|
|
* EST ACK <none>
|
|
* EST SYNC reset counters; move to ACK; notify
|
|
*
|
|
* ===============================================================
|
|
*/
|
|
|
|
int tegra_ivc_channel_notified(struct ivc *ivc)
|
|
{
|
|
enum ivc_state peer_state;
|
|
|
|
/* Copy the receiver's state out of shared memory. */
|
|
ivc_invalidate_counter(ivc, ivc->rx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
peer_state = ACCESS_ONCE(ivc->rx_channel->state);
|
|
|
|
if (peer_state == ivc_state_sync) {
|
|
/*
|
|
* Order observation of ivc_state_sync before stores clearing
|
|
* tx_channel.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
/*
|
|
* Reset tx_channel counters. The remote end is in the SYNC
|
|
* state and won't make progress until we change our state,
|
|
* so the counters are not in use at this time.
|
|
*/
|
|
ivc->tx_channel->w_count = 0;
|
|
ivc->rx_channel->r_count = 0;
|
|
|
|
ivc->w_pos = 0;
|
|
ivc->r_pos = 0;
|
|
|
|
/*
|
|
* Ensure that counters appear cleared before new state can be
|
|
* observed.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
/*
|
|
* Move to ACK state. We have just cleared our counters, so it
|
|
* is now safe for the remote end to start using these values.
|
|
*/
|
|
ivc->tx_channel->state = ivc_state_ack;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Notify remote end to observe state transition.
|
|
*/
|
|
ivc->notify(ivc);
|
|
|
|
} else if (ivc->tx_channel->state == ivc_state_sync &&
|
|
peer_state == ivc_state_ack) {
|
|
/*
|
|
* Order observation of ivc_state_sync before stores clearing
|
|
* tx_channel.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
/*
|
|
* Reset tx_channel counters. The remote end is in the ACK
|
|
* state and won't make progress until we change our state,
|
|
* so the counters are not in use at this time.
|
|
*/
|
|
ivc->tx_channel->w_count = 0;
|
|
ivc->rx_channel->r_count = 0;
|
|
|
|
ivc->w_pos = 0;
|
|
ivc->r_pos = 0;
|
|
|
|
/*
|
|
* Ensure that counters appear cleared before new state can be
|
|
* observed.
|
|
*/
|
|
ivc_wmb();
|
|
|
|
/*
|
|
* Move to ESTABLISHED state. We know that the remote end has
|
|
* already cleared its counters, so it is safe to start
|
|
* writing/reading on this channel.
|
|
*/
|
|
ivc->tx_channel->state = ivc_state_established;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Notify remote end to observe state transition.
|
|
*/
|
|
ivc->notify(ivc);
|
|
|
|
} else if (ivc->tx_channel->state == ivc_state_ack) {
|
|
/*
|
|
* At this point, we have observed the peer to be in either
|
|
* the ACK or ESTABLISHED state. Next, order observation of
|
|
* peer state before storing to tx_channel.
|
|
*/
|
|
ivc_rmb();
|
|
|
|
/*
|
|
* Move to ESTABLISHED state. We know that we have previously
|
|
* cleared our counters, and we know that the remote end has
|
|
* cleared its counters, so it is safe to start writing/reading
|
|
* on this channel.
|
|
*/
|
|
ivc->tx_channel->state = ivc_state_established;
|
|
ivc_flush_counter(ivc, ivc->tx_handle +
|
|
offsetof(struct ivc_channel_header, w_count));
|
|
|
|
/*
|
|
* Notify remote end to observe state transition.
|
|
*/
|
|
ivc->notify(ivc);
|
|
|
|
} else {
|
|
/*
|
|
* There is no need to handle any further action. Either the
|
|
* channel is already fully established, or we are waiting for
|
|
* the remote end to catch up with our current state. Refer
|
|
* to the diagram in "IVC State Transition Table" above.
|
|
*/
|
|
}
|
|
|
|
return ivc->tx_channel->state == ivc_state_established ? 0 : -EAGAIN;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_channel_notified);
|
|
|
|
/*
|
|
* Temporary routine for re-synchronizing the channel across a reboot.
|
|
*/
|
|
int tegra_ivc_channel_sync(struct ivc *ivc)
|
|
{
|
|
if ((ivc == NULL) || (ivc->nframes == 0)) {
|
|
return -EINVAL;
|
|
} else {
|
|
ivc->w_pos = ivc->tx_channel->w_count % ivc->nframes;
|
|
ivc->r_pos = ivc->rx_channel->r_count % ivc->nframes;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_channel_sync);
|
|
|
|
size_t tegra_ivc_align(size_t size)
|
|
{
|
|
return (size + (IVC_ALIGN - 1)) & ~(IVC_ALIGN - 1);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_align);
|
|
|
|
unsigned tegra_ivc_total_queue_size(unsigned queue_size)
|
|
{
|
|
if (queue_size & (IVC_ALIGN - 1)) {
|
|
pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
|
|
__func__, queue_size, IVC_ALIGN);
|
|
return 0;
|
|
}
|
|
return queue_size + sizeof(struct ivc_channel_header);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_total_queue_size);
|
|
|
|
static int check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2,
|
|
unsigned nframes, unsigned frame_size)
|
|
{
|
|
BUG_ON(offsetof(struct ivc_channel_header, w_count) & (IVC_ALIGN - 1));
|
|
BUG_ON(offsetof(struct ivc_channel_header, r_count) & (IVC_ALIGN - 1));
|
|
BUG_ON(sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1));
|
|
|
|
if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
|
|
pr_err("nframes * frame_size overflows\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The headers must at least be aligned enough for counters
|
|
* to be accessed atomically.
|
|
*/
|
|
if (queue_base1 & (IVC_ALIGN - 1)) {
|
|
pr_err("ivc channel start not aligned: %lx\n", queue_base1);
|
|
return -EINVAL;
|
|
}
|
|
if (queue_base2 & (IVC_ALIGN - 1)) {
|
|
pr_err("ivc channel start not aligned: %lx\n", queue_base2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (frame_size & (IVC_ALIGN - 1)) {
|
|
pr_err("frame size not adequately aligned: %u\n", frame_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (queue_base1 < queue_base2) {
|
|
if (queue_base1 + frame_size * nframes > queue_base2) {
|
|
pr_err("queue regions overlap: %lx + %x, %x\n",
|
|
queue_base1, frame_size,
|
|
frame_size * nframes);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (queue_base2 + frame_size * nframes > queue_base1) {
|
|
pr_err("queue regions overlap: %lx + %x, %x\n",
|
|
queue_base2, frame_size,
|
|
frame_size * nframes);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ivc_init_body(struct ivc *ivc, uintptr_t rx_base,
|
|
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
|
|
unsigned nframes, unsigned frame_size,
|
|
struct device *peer_device, void (*notify)(struct ivc *))
|
|
{
|
|
size_t queue_size;
|
|
|
|
int result = check_ivc_params(rx_base, tx_base, nframes, frame_size);
|
|
if (result)
|
|
return result;
|
|
|
|
BUG_ON(!ivc);
|
|
BUG_ON(!notify);
|
|
|
|
queue_size = tegra_ivc_total_queue_size(nframes * frame_size);
|
|
|
|
/*
|
|
* All sizes that can be returned by communication functions should
|
|
* fit in an int.
|
|
*/
|
|
if (frame_size > INT_MAX)
|
|
return -E2BIG;
|
|
|
|
ivc->rx_channel = (struct ivc_channel_header *)rx_base;
|
|
ivc->tx_channel = (struct ivc_channel_header *)tx_base;
|
|
|
|
if (peer_device) {
|
|
if (rx_handle != DMA_ERROR_CODE) {
|
|
ivc->rx_handle = rx_handle;
|
|
ivc->tx_handle = tx_handle;
|
|
} else {
|
|
ivc->rx_handle = dma_map_single(peer_device,
|
|
ivc->rx_channel, queue_size, DMA_BIDIRECTIONAL);
|
|
if (ivc->rx_handle == DMA_ERROR_CODE)
|
|
return -ENOMEM;
|
|
|
|
ivc->tx_handle = dma_map_single(peer_device,
|
|
ivc->tx_channel, queue_size, DMA_BIDIRECTIONAL);
|
|
if (ivc->tx_handle == DMA_ERROR_CODE) {
|
|
dma_unmap_single(peer_device, ivc->rx_handle,
|
|
queue_size, DMA_BIDIRECTIONAL);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
ivc->notify = notify;
|
|
ivc->frame_size = frame_size;
|
|
ivc->nframes = nframes;
|
|
ivc->peer_device = peer_device;
|
|
|
|
/*
|
|
* These values aren't necessarily correct until the channel has been
|
|
* reset.
|
|
*/
|
|
ivc->w_pos = 0;
|
|
ivc->r_pos = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base,
|
|
unsigned nframes, unsigned frame_size,
|
|
struct device *peer_device, void (*notify)(struct ivc *))
|
|
{
|
|
return tegra_ivc_init_body(ivc, rx_base, DMA_ERROR_CODE, tx_base,
|
|
DMA_ERROR_CODE, nframes, frame_size, peer_device, notify);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_init);
|
|
|
|
int tegra_ivc_init_with_dma_handle(struct ivc *ivc, uintptr_t rx_base,
|
|
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
|
|
unsigned nframes, unsigned frame_size,
|
|
struct device *peer_device, void (*notify)(struct ivc *))
|
|
{
|
|
return tegra_ivc_init_body(ivc, rx_base, rx_handle, tx_base,
|
|
tx_handle, nframes, frame_size, peer_device, notify);
|
|
}
|
|
EXPORT_SYMBOL(tegra_ivc_init_with_dma_handle);
|