Jetpack/kernel/nvidia/drivers/misc/tegra-profiler/main.c
dchvs 75c7968d30 Add Jetpack 4.4.1 sources
Jetson Xavier NX, Jetson TX2 Series, Jetson AGX Xavier Series, Jetson Nano, Jetson TX1 [L4T 32.4.4]
2021-01-19 20:45:17 -06:00

859 lines
18 KiB
C

/*
* drivers/misc/tegra-profiler/main.c
*
* Copyright (c) 2013-2020, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/tegra_profiler.h>
#include "quadd.h"
#include "arm_pmu.h"
#include "hrt.h"
#include "comm.h"
#include "mmap.h"
#include "debug.h"
#include "tegra.h"
#include "power_clk.h"
#include "auth.h"
#include "version.h"
#include "quadd_proc.h"
#include "eh_unwind.h"
#include "uncore_events.h"
#ifdef CONFIG_ARCH_TEGRA_19x_SOC
#include "carmel_pmu.h"
#endif
#ifdef CONFIG_ARM64
#include "armv8_pmu.h"
#else
#include "armv7_pmu.h"
#endif
static struct quadd_ctx ctx;
static DEFINE_PER_CPU(struct source_info, ctx_pmu_info);
static DEFINE_PER_CPU(struct quadd_comm_cap_for_cpu, per_cpu_caps);
static struct source_info *get_pmu_info_for_current_cpu(void)
{
return this_cpu_ptr(&ctx_pmu_info);
}
static struct quadd_comm_cap_for_cpu *get_capabilities_for_cpu_int(int cpuid)
{
return &per_cpu(per_cpu_caps, cpuid);
}
int tegra_profiler_try_lock(void)
{
return atomic_cmpxchg(&ctx.tegra_profiler_lock, 0, 1);
}
EXPORT_SYMBOL_GPL(tegra_profiler_try_lock);
void tegra_profiler_unlock(void)
{
atomic_set(&ctx.tegra_profiler_lock, 0);
}
EXPORT_SYMBOL_GPL(tegra_profiler_unlock);
static int start(void)
{
int err;
if (tegra_profiler_try_lock()) {
pr_err("Error: tegra_profiler lock\n");
return -EBUSY;
}
if (!atomic_cmpxchg(&ctx.started, 0, 1)) {
if (quadd_mode_is_sampling(&ctx)) {
if (ctx.pmu) {
err = ctx.pmu->enable();
if (err) {
pr_err("error: pmu enable\n");
goto out_err;
}
}
}
ctx.comm->reset();
err = quadd_hrt_start();
if (err) {
pr_err("error: hrt start\n");
goto out_err;
}
err = quadd_uncore_start();
if (err) {
pr_err("error: uncore start\n");
goto out_err_hrt;
}
err = quadd_power_clk_start();
if (err < 0) {
pr_err("error: power_clk start\n");
goto out_err_uncore;
}
}
return 0;
out_err_uncore:
quadd_uncore_stop();
out_err_hrt:
quadd_hrt_stop();
out_err:
atomic_set(&ctx.started, 0);
tegra_profiler_unlock();
return err;
}
static void stop(void)
{
int cpu;
if (atomic_cmpxchg(&ctx.started, 1, 0)) {
quadd_hrt_stop();
quadd_uncore_stop();
quadd_power_clk_stop();
ctx.comm->reset();
quadd_unwind_stop();
if (ctx.pmu) {
ctx.pmu->disable();
for_each_possible_cpu(cpu)
per_cpu(ctx_pmu_info, cpu).active = 0;
}
if (ctx.carmel_pmu)
ctx.carmel_pmu_info.active = 0;
tegra_profiler_unlock();
}
}
static inline int
is_event_supported(struct source_info *si, const struct quadd_event *event)
{
unsigned int type, id;
int i, nr = si->nr_supp_events;
struct quadd_event *events = si->supp_events;
type = event->type;
id = event->id;
if (type == QUADD_EVENT_TYPE_RAW ||
type == QUADD_EVENT_TYPE_RAW_CARMEL_UNCORE)
return (id & ~si->raw_event_mask) == 0;
if (type == QUADD_EVENT_TYPE_HARDWARE) {
for (i = 0; i < nr; i++) {
if (id == events[i].id)
return 1;
}
}
return 0;
}
static inline bool
validate_freq(unsigned int freq)
{
return freq >= 100 && freq <= 100000;
}
static int
set_parameters_for_cpu(struct quadd_pmu_setup_for_cpu *params)
{
int i, err, nr_pmu = 0;
int cpuid = params->cpuid;
struct source_info *pmu_info = &per_cpu(ctx_pmu_info, cpuid);
struct quadd_event pmu_events[QUADD_MAX_COUNTERS];
if (!ctx.mode_is_sampling)
return -EINVAL;
if (!pmu_info->is_present)
return -ENODEV;
if (pmu_info->nr_supp_events == 0)
return -ENODEV;
if (params->nr_events > QUADD_MAX_COUNTERS)
return -EINVAL;
for (i = 0; i < params->nr_events; i++) {
struct quadd_event *event = &params->events[i];
if (is_event_supported(pmu_info, event)) {
pmu_events[nr_pmu++] = *event;
pr_debug("[%d] PMU active event: %#x (%s)\n",
cpuid, event->id,
event->type == QUADD_EVENT_TYPE_RAW ?
"raw" : "hw");
} else {
pr_err("[%d] Bad event: %#x (%s)\n", cpuid, event->id,
event->type == QUADD_EVENT_TYPE_RAW ?
"raw" : "hw");
return -EINVAL;
}
}
err = ctx.pmu->set_events(cpuid, pmu_events, nr_pmu);
if (err) {
pr_err("PMU set parameters: error\n");
per_cpu(ctx_pmu_info, cpuid).active = 0;
return err;
}
per_cpu(ctx_pmu_info, cpuid).active = 1;
return err;
}
static int verify_app(struct quadd_parameters *p, uid_t task_uid)
{
int err;
uid_t uid = 0;
err = quadd_auth_is_debuggable((char *)p->package_name, &uid);
if (err < 0) {
pr_err("error: app either non-debuggable or not found: %s\n",
p->package_name);
return err;
}
pr_info("app \"%s\" is debuggable, uid: %u\n",
p->package_name, (unsigned int)uid);
if (task_uid != uid) {
pr_err("error: uids are not matched: %u, %u\n",
(unsigned int)task_uid, (unsigned int)uid);
return -EACCES;
}
return 0;
}
static inline bool
is_carmel_events(const struct quadd_event *events, int nr)
{
int i;
for (i = 0; i < nr; i++) {
if (events[i].type == QUADD_EVENT_TYPE_RAW_CARMEL_UNCORE)
return true;
}
return false;
}
static int
set_parameters(struct quadd_parameters *p)
{
int err = 0;
uid_t task_uid, current_uid;
struct task_struct *task = NULL;
u64 *low_addr_p;
u32 extra;
#ifdef CONFIG_ARCH_TEGRA_19x_SOC
int nr;
#endif
extra = p->reserved[QUADD_PARAM_IDX_EXTRA];
ctx.mode_is_sampling =
extra & QUADD_PARAM_EXTRA_SAMPLING ? 1 : 0;
ctx.mode_is_tracing =
extra & QUADD_PARAM_EXTRA_TRACING ? 1 : 0;
ctx.mode_is_sample_all =
extra & QUADD_PARAM_EXTRA_SAMPLE_ALL_TASKS ? 1 : 0;
ctx.mode_is_trace_all = p->trace_all_tasks;
ctx.mode_is_sample_tree =
extra & QUADD_PARAM_EXTRA_SAMPLE_TREE ? 1 : 0;
ctx.mode_is_trace_tree =
extra & QUADD_PARAM_EXTRA_TRACE_TREE ? 1 : 0;
ctx.mode_is_sampling_timer =
extra & QUADD_PARAM_EXTRA_SAMPLING_TIMER ? 1 : 0;
ctx.mode_is_sampling_sched =
extra & QUADD_PARAM_EXTRA_SAMPLING_SCHED_OUT ? 1 : 0;
if (!ctx.mode_is_sampling_timer && !ctx.mode_is_sampling_sched)
ctx.mode_is_sampling = 0;
if (ctx.mode_is_sample_all)
ctx.mode_is_sample_tree = 0;
if (ctx.mode_is_trace_all)
ctx.mode_is_trace_tree = 0;
pr_info("flags: s/t/sa/ta/st/tt: %u/%u/%u/%u/%u/%u, st/ss: %u/%u\n",
ctx.mode_is_sampling,
ctx.mode_is_tracing,
ctx.mode_is_sample_all,
ctx.mode_is_trace_all,
ctx.mode_is_sample_tree,
ctx.mode_is_trace_tree,
ctx.mode_is_sampling_timer,
ctx.mode_is_sampling_sched);
if ((ctx.mode_is_trace_all || ctx.mode_is_sample_all) &&
!capable(CAP_SYS_ADMIN)) {
pr_err("error: \"all tasks\" modes are allowed only for root\n");
return -EACCES;
}
p->package_name[sizeof(p->package_name) - 1] = '\0';
ctx.param = *p;
current_uid = from_kuid(&init_user_ns, current_fsuid());
pr_info("owner uid: %u\n", current_uid);
if ((ctx.mode_is_tracing && !ctx.mode_is_trace_all) ||
(ctx.mode_is_sampling && !ctx.mode_is_sample_all)) {
if (ctx.mode_is_sampling && !validate_freq(p->freq)) {
pr_err("error: incorrect frequency: %u\n", p->freq);
return -EINVAL;
}
/* Currently only first process */
if (p->nr_pids != 1 || p->pids[0] == 0)
return -EINVAL;
rcu_read_lock();
task = get_pid_task(find_vpid(p->pids[0]), PIDTYPE_PID);
rcu_read_unlock();
if (!task) {
pr_err("error: process not found: %u\n", p->pids[0]);
return -ESRCH;
}
task_uid = from_kuid(&init_user_ns, task_uid(task));
pr_info("task uid: %u\n", task_uid);
if (!capable(CAP_SYS_ADMIN)) {
if (current_uid != task_uid) {
err = verify_app(p, task_uid);
if (err < 0)
goto out_put_task;
}
ctx.collect_kernel_ips = 0;
} else {
ctx.collect_kernel_ips = 1;
}
low_addr_p =
(u64 *)&p->reserved[QUADD_PARAM_IDX_BT_LOWER_BOUND];
ctx.hrt->low_addr = (unsigned long)*low_addr_p;
err = quadd_unwind_start(task);
if (err)
goto out_put_task;
}
#ifdef CONFIG_ARCH_TEGRA_19x_SOC
nr = p->nr_events;
if (nr > QUADD_MAX_COUNTERS) {
err = -EINVAL;
goto out_put_task;
}
if (ctx.carmel_pmu && is_carmel_events(p->events, nr)) {
u32 freq = p->reserved[QUADD_PARAM_IDX_UNCORE_FREQ];
if (!capable(CAP_SYS_ADMIN)) {
pr_err("error: Carmel PMU: allowed only for root\n");
err = -EACCES;
goto out_put_task;
}
if (!validate_freq(freq)) {
pr_err("error: incorrect uncore freq: %u\n", freq);
err = -EINVAL;
goto out_put_task;
}
err = ctx.carmel_pmu->set_events(-1, p->events, nr);
if (err) {
pr_err("Carmel Uncore PMU set parameters: error\n");
ctx.carmel_pmu_info.active = 0;
goto out_put_task;
}
ctx.carmel_pmu_info.active = 1;
}
#endif
pr_info("New parameters have been applied\n");
out_put_task:
if (task)
put_task_struct(task);
return err;
}
static void
get_capabilities_for_cpu(int cpuid, struct quadd_comm_cap_for_cpu *cap)
{
int i, id;
struct quadd_events_cap *events_cap;
struct source_info *s = &per_cpu(ctx_pmu_info, cpuid);
if (!s->is_present)
return;
cap->cpuid = cpuid;
cap->l2_cache = 0;
cap->l2_multiple_events = 0;
events_cap = &cap->events_cap;
events_cap->raw_event_mask = s->raw_event_mask;
events_cap->cpu_cycles = 0;
events_cap->l1_dcache_read_misses = 0;
events_cap->l1_dcache_write_misses = 0;
events_cap->l1_icache_misses = 0;
events_cap->instructions = 0;
events_cap->branch_instructions = 0;
events_cap->branch_misses = 0;
events_cap->bus_cycles = 0;
events_cap->l2_dcache_read_misses = 0;
events_cap->l2_dcache_write_misses = 0;
events_cap->l2_icache_misses = 0;
for (i = 0; i < s->nr_supp_events; i++) {
struct quadd_event *event = &s->supp_events[i];
id = event->id;
if (id == QUADD_EVENT_HW_L2_DCACHE_READ_MISSES ||
id == QUADD_EVENT_HW_L2_DCACHE_WRITE_MISSES ||
id == QUADD_EVENT_HW_L2_ICACHE_MISSES) {
cap->l2_cache = 1;
cap->l2_multiple_events = 1;
}
switch (id) {
case QUADD_EVENT_HW_CPU_CYCLES:
events_cap->cpu_cycles = 1;
break;
case QUADD_EVENT_HW_INSTRUCTIONS:
events_cap->instructions = 1;
break;
case QUADD_EVENT_HW_BRANCH_INSTRUCTIONS:
events_cap->branch_instructions = 1;
break;
case QUADD_EVENT_HW_BRANCH_MISSES:
events_cap->branch_misses = 1;
break;
case QUADD_EVENT_HW_BUS_CYCLES:
events_cap->bus_cycles = 1;
break;
case QUADD_EVENT_HW_L1_DCACHE_READ_MISSES:
events_cap->l1_dcache_read_misses = 1;
break;
case QUADD_EVENT_HW_L1_DCACHE_WRITE_MISSES:
events_cap->l1_dcache_write_misses = 1;
break;
case QUADD_EVENT_HW_L1_ICACHE_MISSES:
events_cap->l1_icache_misses = 1;
break;
case QUADD_EVENT_HW_L2_DCACHE_READ_MISSES:
events_cap->l2_dcache_read_misses = 1;
break;
case QUADD_EVENT_HW_L2_DCACHE_WRITE_MISSES:
events_cap->l2_dcache_write_misses = 1;
break;
case QUADD_EVENT_HW_L2_ICACHE_MISSES:
events_cap->l2_icache_misses = 1;
break;
default:
pr_err_once("%s: error: invalid event\n",
__func__);
return;
}
}
}
static u32 get_possible_cpu(void)
{
int cpu;
u32 mask = 0;
struct source_info *s;
if (ctx.pmu) {
for_each_possible_cpu(cpu) {
/* since we don't support more than 32 CPUs */
if (cpu >= BITS_PER_BYTE * sizeof(mask))
break;
s = &per_cpu(ctx_pmu_info, cpu);
if (s->is_present)
mask |= (1U << cpu);
}
}
return mask;
}
static void
get_capabilities(struct quadd_comm_cap *cap)
{
unsigned int extra = 0;
struct quadd_events_cap *events_cap = &cap->events_cap;
cap->pmu = ctx.pmu ? 1 : 0;
cap->l2_cache = 0;
events_cap->cpu_cycles = 0;
events_cap->l1_dcache_read_misses = 0;
events_cap->l1_dcache_write_misses = 0;
events_cap->l1_icache_misses = 0;
events_cap->instructions = 0;
events_cap->branch_instructions = 0;
events_cap->branch_misses = 0;
events_cap->bus_cycles = 0;
events_cap->l2_dcache_read_misses = 0;
events_cap->l2_dcache_write_misses = 0;
events_cap->l2_icache_misses = 0;
cap->tegra_lp_cluster = quadd_is_cpu_with_lp_cluster();
cap->power_rate = 1;
cap->blocked_read = 1;
extra |= QUADD_COMM_CAP_EXTRA_BT_KERNEL_CTX;
extra |= QUADD_COMM_CAP_EXTRA_GET_MMAP;
extra |= QUADD_COMM_CAP_EXTRA_GROUP_SAMPLES;
extra |= QUADD_COMM_CAP_EXTRA_BT_UNWIND_TABLES;
extra |= QUADD_COMM_CAP_EXTRA_SUPPORT_AARCH64;
extra |= QUADD_COMM_CAP_EXTRA_SPECIAL_ARCH_MMAP;
extra |= QUADD_COMM_CAP_EXTRA_UNWIND_MIXED;
extra |= QUADD_COMM_CAP_EXTRA_UNW_ENTRY_TYPE;
extra |= QUADD_COMM_CAP_EXTRA_RB_MMAP_OP;
extra |= QUADD_COMM_CAP_EXTRA_CPU_MASK;
if (ctx.hrt->tc) {
extra |= QUADD_COMM_CAP_EXTRA_ARCH_TIMER;
if (ctx.hrt->arch_timer_user_access)
extra |= QUADD_COMM_CAP_EXTRA_ARCH_TIMER_USR;
}
if (ctx.pclk_cpufreq)
extra |= QUADD_COMM_CAP_EXTRA_CPUFREQ;
cap->reserved[QUADD_COMM_CAP_IDX_EXTRA] = extra;
cap->reserved[QUADD_COMM_CAP_IDX_CPU_MASK] = get_possible_cpu();
}
void quadd_get_state(struct quadd_module_state *state)
{
unsigned int status = 0;
quadd_hrt_get_state(state);
if (ctx.comm->is_active())
status |= QUADD_MOD_STATE_STATUS_IS_ACTIVE;
if (quadd_auth_is_auth_open())
status |= QUADD_MOD_STATE_STATUS_IS_AUTH_OPEN;
state->reserved[QUADD_MOD_STATE_IDX_STATUS] = status;
}
static int
set_extab(struct quadd_sections *extabs,
struct quadd_mmap_area *mmap)
{
return quadd_unwind_set_extab(extabs, mmap);
}
static void
delete_mmap(struct quadd_mmap_area *mmap)
{
quadd_unwind_clean_mmap(mmap);
}
static int
is_cpu_present(int cpuid)
{
struct source_info *s = &per_cpu(ctx_pmu_info, cpuid);
return s->is_present;
}
static struct quadd_comm_control_interface control = {
.start = start,
.stop = stop,
.set_parameters = set_parameters,
.set_parameters_for_cpu = set_parameters_for_cpu,
.get_capabilities = get_capabilities,
.get_capabilities_for_cpu = get_capabilities_for_cpu,
.get_state = quadd_get_state,
.set_extab = set_extab,
.delete_mmap = delete_mmap,
.is_cpu_present = is_cpu_present,
};
static inline
struct quadd_event_source *pmu_init(void)
{
#ifdef CONFIG_ARM64
return quadd_armv8_pmu_init();
#else
return quadd_armv7_pmu_init();
#endif
}
static inline void pmu_deinit(void)
{
#ifdef CONFIG_ARM64
quadd_armv8_pmu_deinit();
#else
quadd_armv7_pmu_deinit();
#endif
}
int quadd_late_init(void)
{
int i, nr_events, err;
unsigned int raw_event_mask;
struct quadd_event *events;
struct source_info *pmu_info;
int cpuid;
if (unlikely(!ctx.early_initialized))
return -ENODEV;
if (likely(ctx.initialized))
return 0;
ctx.pmu = pmu_init();
if (IS_ERR(ctx.pmu)) {
pr_err("PMU init failed\n");
err = PTR_ERR(ctx.pmu);
goto out_err;
}
for_each_possible_cpu(cpuid) {
const struct quadd_arch_info *arch;
arch = ctx.pmu->get_arch(cpuid);
if (!arch)
continue;
pmu_info = &per_cpu(ctx_pmu_info, cpuid);
pmu_info->is_present = 1;
events = pmu_info->supp_events;
nr_events =
ctx.pmu->supported_events(cpuid, events,
QUADD_MAX_COUNTERS,
&raw_event_mask);
pmu_info->nr_supp_events = nr_events;
pmu_info->raw_event_mask = raw_event_mask;
pr_debug("CPU: %d PMU: amount of events: %d, raw mask: %#x\n",
cpuid, nr_events, raw_event_mask);
for (i = 0; i < nr_events; i++)
pr_debug("CPU: %d PMU event: %s\n", cpuid,
quadd_get_hw_event_str(events[i].id));
}
#ifdef CONFIG_ARCH_TEGRA_19x_SOC
ctx.carmel_pmu = quadd_carmel_uncore_pmu_init();
if (IS_ERR(ctx.carmel_pmu)) {
pr_err("Carmel Uncore PMU init failed\n");
err = PTR_ERR(ctx.carmel_pmu);
goto out_err_pmu;
}
pmu_info = &ctx.carmel_pmu_info;
events = pmu_info->supp_events;
nr_events = ctx.carmel_pmu->supported_events(0, events,
QUADD_MAX_COUNTERS,
&raw_event_mask);
pmu_info->is_present = 1;
pmu_info->nr_supp_events = nr_events;
pmu_info->raw_event_mask = raw_event_mask;
#endif
ctx.hrt = quadd_hrt_init(&ctx);
if (IS_ERR(ctx.hrt)) {
pr_err("error: HRT init failed\n");
err = PTR_ERR(ctx.hrt);
goto out_err_carmel_pmu;
}
err = quadd_uncore_init(&ctx);
if (err < 0) {
pr_err("error: uncore events init failed\n");
goto out_err_hrt;
}
err = quadd_power_clk_init(&ctx);
if (err < 0) {
pr_err("error: POWER CLK init failed\n");
goto out_err_uncore;
}
err = quadd_unwind_init(&ctx);
if (err < 0) {
pr_err("error: EH unwinding init failed\n");
goto out_err_power_clk;
}
get_capabilities(&ctx.cap);
for_each_possible_cpu(cpuid)
get_capabilities_for_cpu(cpuid, &per_cpu(per_cpu_caps, cpuid));
ctx.initialized = 1;
return 0;
out_err_power_clk:
quadd_power_clk_deinit();
out_err_uncore:
quadd_uncore_deinit();
out_err_hrt:
quadd_hrt_deinit();
out_err_carmel_pmu:
#ifdef CONFIG_ARCH_TEGRA_19x_SOC
quadd_carmel_uncore_pmu_deinit();
out_err_pmu:
#endif
pmu_deinit();
out_err:
return err;
}
static int __init quadd_early_init(void)
{
int cpuid, err;
pr_info("version: %s, samples/io: %d/%d\n",
QUADD_MODULE_VERSION,
QUADD_SAMPLES_VERSION,
QUADD_IO_VERSION);
atomic_set(&ctx.started, 0);
ctx.early_initialized = 0;
ctx.initialized = 0;
#ifndef MODULE
atomic_set(&ctx.tegra_profiler_lock, 0);
#endif
ctx.get_capabilities_for_cpu = get_capabilities_for_cpu_int;
ctx.get_pmu_info = get_pmu_info_for_current_cpu;
ctx.pmu = NULL;
for_each_possible_cpu(cpuid) {
struct source_info *pmu_info = &per_cpu(ctx_pmu_info, cpuid);
pmu_info->active = 0;
pmu_info->is_present = 0;
}
ctx.carmel_pmu = NULL;
ctx.carmel_pmu_info.active = 0;
ctx.comm = quadd_comm_init(&ctx, &control);
if (IS_ERR(ctx.comm)) {
err = PTR_ERR(ctx.comm);
goto out_err;
}
err = quadd_auth_init(&ctx);
if (err < 0)
goto out_err_comm;
quadd_proc_init(&ctx);
ctx.early_initialized = 1;
return 0;
out_err_comm:
quadd_comm_exit();
out_err:
return err;
}
static void deinit(void)
{
if (ctx.initialized) {
quadd_unwind_deinit();
quadd_power_clk_deinit();
quadd_uncore_deinit();
quadd_hrt_deinit();
#ifdef CONFIG_ARCH_TEGRA_19x_SOC
quadd_carmel_uncore_pmu_deinit();
#endif
pmu_deinit();
ctx.initialized = 0;
}
if (ctx.early_initialized) {
quadd_proc_deinit();
quadd_auth_deinit();
quadd_comm_exit();
ctx.early_initialized = 0;
}
}
static int __init quadd_module_init(void)
{
return quadd_early_init();
}
static void __exit quadd_module_exit(void)
{
deinit();
}
module_init(quadd_module_init);
module_exit(quadd_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Nvidia Ltd");
MODULE_DESCRIPTION("Tegra profiler");