Jetpack/kernel/nvidia/drivers/misc/nvs-dfsh/nvs_dfsh.c
dchvs 75c7968d30 Add Jetpack 4.4.1 sources
Jetson Xavier NX, Jetson TX2 Series, Jetson AGX Xavier Series, Jetson Nano, Jetson TX1 [L4T 32.4.4]
2021-01-19 20:45:17 -06:00

916 lines
20 KiB
C

/* Copyright (c) 2016 - 2017, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/device.h>
#include <linux/regulator/consumer.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of.h>
#include <linux/nvs.h>
#include <linux/crc32.h>
#include <linux/time.h>
#include <linux/trace_imu.h>
#include "nvs_dfsh.h"
#define DFSH_DRIVER_VERSION (1)
#define DFSH_NAME "dfsh"
#define DFSH_POR_DELAY_MS (100)
#define DFSH_RESET_DELAY_MS (50)
/* regulator names in order of powering on */
static char *dfsh_vregs[] = {
"vdd-1v8",
};
struct sensor_cfg snsr_list[] = {
{
.name = "frame_sync",
.snsr_id = 0,
.kbuf_sz = 1024,
.timestamp_sz = 8,
.snsr_data_n = 8,
.ch_n = 1,
.ch_sz = 8,
.part = "STM32L151x",
.vendor = "STMicroElectronics",
.version = 1,
.delay_us_min = 10000,
.delay_us_max = 255000,
.matrix = { 1, 0, 0, 0, 1, 0, 0, 0, 1 },
},
{
.name = "accelerometer",
.kbuf_sz = 1024,
.timestamp_sz = 8,
.snsr_data_n = 18,
.ch_n = 3,
.ch_sz = -2,
.part = "IMU-20628",
.vendor = "InvenSense",
.version = 1,
.float_significance = NVS_FLOAT_NANO,
.max_range = {
.ival = 19,
.fval = 613300000,
},
.resolution = {
.ival = 0,
.fval = 598550,
},
.milliamp = {
.ival = 0,
.fval = 250000,
},
.delay_us_min = 5000,
.delay_us_max = 255000,
.matrix = { 1, 0, 0, 0, 1, 0, 0, 0, 1 },
.scale = {
/* 0.000118498 (4.0 * 0.970737134 / 32768.0) */
.ival = 0,
.fval = 598550,
},
},
{
.name = "gyroscope",
.kbuf_sz = 1024,
.timestamp_sz = 8,
.snsr_data_n = 18,
.ch_n = 3,
.ch_sz = -2,
.part = "IMU-20628",
.vendor = "InvenSense",
.version = 1,
.float_significance = NVS_FLOAT_NANO,
.max_range = {
.ival = 34,
.fval = 906585040,
},
.resolution = {
.ival = 0,
.fval = 1064225,
},
.milliamp = {
.ival = 6,
.fval = 500000,
},
.delay_us_min = 5000,
.delay_us_max = 255000,
.matrix = { 1, 0, 0, 0, 1, 0, 0, 0, 1 },
.scale = {
/* 0.000133158 (250.0f * 3.14159265f / 180.0f / 32768.0) */
.ival = 0,
.fval = 1064225,
},
},
{
.name = "magnetic_field",
.kbuf_sz = 1024,
.timestamp_sz = 8,
.snsr_data_n = 24,
.ch_n = 3,
.ch_sz = -4,
.part = "AK8963C",
.vendor = "Asahi Kasei Microdevices",
.version = 1,
.max_range = {
.ival = 2500,
.fval = 0,
},
.resolution = {
.ival = 0,
.fval = 127929687,
},
.milliamp = {
.ival = 0,
.fval = 600000,
},
.delay_us_min = 10000,
.delay_us_max = 255000,
.matrix = { 1, 0, 0, 0, 1, 0, 0, 0, 1 },
.scale = {
/* 0.127929687 (4192.0 / 32768.0) */
.ival = 0,
.fval = 127929687,
},
},
};
#define DEV_N (ARRAY_SIZE(snsr_list))
struct dfsh_state {
struct tty_struct *tty; /* Refer to parent data structure */
struct platform_device *pdev;
void *nvs_st[DEV_N];
struct nvs_fn_if *nvs;
struct sensor_cfg cfg[DEV_N];
struct regulator_bulk_data vreg[ARRAY_SIZE(dfsh_vregs)];
unsigned int sts; /* status flags */
unsigned int errs; /* error count */
unsigned int enabled_msk; /* global enable status */
unsigned int enabled[DEV_N]; /* dev enable status */
unsigned int fw_version; /* mcu firmware version */
int gpio_rst; /* GPIO reset */
int gpio_boot0; /* GPIO boot0 */
int gpio_rst_asrt_pol; /* GPIO reset assert polarity */
bool no_sensors;
int pkt_byte_idx;
int pyld_len;
bool tty_close;
/* Write lock to single underlying tty device */
struct mutex tty_write_lock;
/* Read buffer - to hold one pkt before de-muxing */
union {
struct dfsh_pkt_t pkt;
unsigned char pkt_buf[sizeof(struct dfsh_pkt_t)];
};
};
static struct dfsh_state *st;
/*Modify the struct if accel/gyro payload is modified*/
struct __attribute__ ((__packed__)) sensor_sync_pkt_t {
uint16_t sensor_data[3];
uint32_t status;
uint64_t timestamp;
};
/* We are using crc32 to validate packets */
#define CRC_SIZE 4
#define PPYLD(pkt) ((uint8_t *)(pkt + \
sizeof(struct dfsh_pkt_hdr_t)))
#define PYLD(pkt) (*(uint32_t *)(pkt + \
sizeof(struct dfsh_pkt_hdr_t)))
#define CRC(pkt, pyld_sz) (*(uint32_t *)(pkt + \
sizeof(struct dfsh_pkt_hdr_t) + \
pyld_sz))
#define CRC_DATA_SZ(pyld_sz) (sizeof(struct dfsh_pkt_hdr_t) \
+ pyld_sz)
#define PKT_SZ(pyld_sz) (sizeof(struct dfsh_pkt_hdr_t) \
+ pyld_sz + CRC_SIZE)
static uint32_t pkt_crc(char *pkt, int len)
{
uint32_t crc;
crc = 0xCAFEBABA;
/* FIX ME: Temp code until CRC module is coded up in fw */
/* crc = crc32(0, pkt, len); */
return crc;
}
static int dfsh_write_cmd(struct dfsh_state *st, uint8_t *buffer, int count)
{
struct tty_struct *tty = st->tty;
char pkt[sizeof(struct dfsh_pkt_t)];
const char *b;
int retval = 0;
int remained;
int c;
if (mutex_lock_interruptible(&st->tty_write_lock))
return -EINTR;
/* Header */
((struct dfsh_pkt_t *)pkt)->header.start = SENSOR_HUB_START;
((struct dfsh_pkt_t *)pkt)->header.type = MSG_MCU;
/* Payload */
memcpy(PPYLD(pkt), buffer, count);
/* CRC */
CRC(pkt, sizeof(struct mcu_payload_t)) =
pkt_crc(pkt, CRC_DATA_SZ(sizeof(struct mcu_payload_t)));
remained = PKT_SZ(sizeof(struct mcu_payload_t));
b = pkt;
while (remained > 0) {
c = tty->ops->write(tty, b, remained);
if (c < 0) {
retval = c;
goto break_out;
}
if (!c)
break;
b += c;
remained -= c;
}
break_out:
if (tty->ops->flush_chars)
tty->ops->flush_chars(tty);
if (remained && tty->fasync)
set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
mutex_unlock(&st->tty_write_lock);
return (remained == 0) ? count : retval;
}
static int pkt_payload_len(unsigned char type)
{
switch (type) {
case MSG_CAMERA:
return sizeof(struct camera_payload_t);
case MSG_ACCEL:
return sizeof(struct accel_payload_t);
case MSG_GYRO:
return sizeof(struct gyro_payload_t);
case MSG_MAGN:
return sizeof(struct magn_payload_t);
case MSG_MCU:
return sizeof(struct mcu_payload_t);
default:
return -1;
}
}
static int dfsh_msg_id2snsr_type(unsigned char type)
{
switch (type) {
case MSG_ACCEL:
return SENSOR_TYPE_ACCELEROMETER;
case MSG_GYRO:
return SENSOR_TYPE_GYROSCOPE;
case MSG_MAGN:
return SENSOR_TYPE_MAGNETIC_FIELD;
default:
return 0;
}
}
static int dfsh_msg_id2snsr_id(u8 msg_id)
{
int snsr_id;
snsr_id = msg_id - SNSR_MSG_ID_START;
if (snsr_id > (SNSR_MSG_ID_END - SNSR_MSG_ID_START))
snsr_id = -EINVAL;
return snsr_id;
}
static void dfsh_err(struct dfsh_state *st)
{
st->errs++;
if (!st->errs)
st->errs--;
}
static int dfsh_reset(void *client, int snsr_id)
{
struct dfsh_state *st = (struct dfsh_state *)client;
int ret = 0;
if (st->gpio_rst >= 0) {
ret = gpio_direction_output(st->gpio_rst,
st->gpio_rst_asrt_pol);
mdelay(DFSH_RESET_DELAY_MS);
ret |= gpio_direction_output(st->gpio_rst,
!st->gpio_rst_asrt_pol);
if (ret < 0)
dev_err(st->tty->dev, "%s GPIO=%d assert=%d ERR=%d\n",
__func__, st->gpio_rst, st->gpio_rst_asrt_pol,
ret);
else if (st->sts & NVS_STS_SPEW_MSG)
dev_info(st->tty->dev, "%s\n", __func__);
}
return ret;
}
static int dfsh_pm(struct dfsh_state *st, bool enable)
{
int ret = 0;
if (enable) {
ret = nvs_vregs_enable(st->tty->dev, st->vreg,
ARRAY_SIZE(dfsh_vregs));
if (ret > 0) {
mdelay(DFSH_POR_DELAY_MS);
ret = dfsh_reset(st, -1);
}
} else {
/* FIX ME */
/* ret |= nvs_vregs_disable(st->tty->dev, st->vreg,
ARRAY_SIZE(dfsh_vregs)); */
}
if (ret > 0)
ret = 0;
if (ret) {
dev_err(st->tty->dev, "%s pwr=%x ERR=%d\n",
__func__, enable, ret);
} else {
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(st->tty->dev, "%s pwr=%x\n",
__func__, enable);
}
return ret;
}
static void dfsh_pm_exit(struct dfsh_state *st)
{
dfsh_pm(st, false);
nvs_vregs_exit(st->tty->dev, st->vreg, ARRAY_SIZE(dfsh_vregs));
}
static int dfsh_pm_init(struct dfsh_state *st)
{
int ret;
ret = nvs_vregs_init(&st->pdev->dev, st->vreg,
ARRAY_SIZE(dfsh_vregs), dfsh_vregs);
gpio_set_value(st->gpio_rst, 0);
gpio_set_value(st->gpio_boot0, 0);
ret = nvs_vregs_disable(&st->pdev->dev, st->vreg,
ARRAY_SIZE(dfsh_vregs));
ret = nvs_vregs_enable(&st->pdev->dev, st->vreg,
ARRAY_SIZE(dfsh_vregs));
mdelay(DFSH_RESET_DELAY_MS);
gpio_set_value(st->gpio_rst, 1);
return ret;
}
static void dfsh_enable_mcu_sensor(struct dfsh_state *st, bool enable)
{
uint32_t cmd;
if (enable) {
if (!st->enabled_msk) {
cmd = CMD_START_TS;
dfsh_write_cmd(st, (uint8_t *)&cmd, sizeof(cmd));
cmd = CMD_CAM_FSIN_START;
dfsh_write_cmd(st, (uint8_t *)&cmd, sizeof(cmd));
pr_info("Enable mcu sensor data.");
}
} else {
if ((!st->tty_close) && (!st->enabled_msk)) {
cmd = CMD_STOP_TS;
dfsh_write_cmd(st, (uint8_t *)&cmd, sizeof(cmd));
cmd = CMD_CAM_FSIN_STOP;
dfsh_write_cmd(st, (uint8_t *)&cmd, sizeof(cmd));
pr_info("Disable mcu sensor.");
}
}
}
static int dfsh_disable(struct dfsh_state *st, int snsr_id)
{
bool disable = true;
int ret = 0;
unsigned int i;
if (snsr_id >= 0) {
if (st->enabled_msk & ~(1 << snsr_id)) {
st->enabled_msk &= ~(1 << snsr_id);
st->enabled[snsr_id] = 0;
disable = false;
}
}
if (disable) {
ret = dfsh_pm(st, false);
if (!ret) {
st->enabled_msk = 0;
for (i = 0; i < DEV_N; i++)
st->enabled[i] = 0;
}
dfsh_enable_mcu_sensor(st, false);
}
return ret;
}
static int dfsh_enable(void *client, int snsr_id, int enable)
{
struct dfsh_state *st = (struct dfsh_state *)client;
int ret = 0;
if (enable < 0)
return st->enabled[snsr_id]; /* return enable status */
if (enable) {
ret = dfsh_pm(st, true);
if (!ret) {
/* Enable MCU read sensor data */
dfsh_enable_mcu_sensor(st, true);
/* if individual sensor enable is supported then here
* we want to send the sensor enable message to DFSH.
*/
/* ret = dfsh_en(st, snsr_id);
* if (ret < 0) {
* if (!st->enabled[snsr_id])
* dfsh_disable(st, snsr_id);
* } else {
*/
st->enabled[snsr_id] = enable;
st->enabled_msk |= (1 << snsr_id);
}
} else {
ret = dfsh_disable(st, snsr_id);
}
return ret;
}
static int dfsh_nvs_read(void *client, int snsr_id, char *buf)
{
struct dfsh_state *st = (struct dfsh_state *)client;
ssize_t t;
t = snprintf(buf, PAGE_SIZE, "DFSH driver v.%u\n", DFSH_DRIVER_VERSION);
t += snprintf(buf + t, PAGE_SIZE - t, "DFSH MCU FW v.%u.%u.%u\n",
(st->fw_version >> 24 & 0xFF), (st->fw_version >> 16 & 0xFF),
(st->fw_version >> 8 & 0xFF));
/* device tree parameters */
t += snprintf(buf + t, PAGE_SIZE - t, "gpio_boot0=%d\n", st->gpio_boot0);
t += snprintf(buf + t, PAGE_SIZE - t, "gpio_reset=%d\n", st->gpio_rst);
t += snprintf(buf + t, PAGE_SIZE - t, "gpio_reset_assert_polarity=%d\n",
st->gpio_rst_asrt_pol);
return t;
}
static struct nvs_fn_dev dfsh_fn_dev = {
.enable = dfsh_enable,
.reset = dfsh_reset,
.nvs_read = dfsh_nvs_read,
};
static inline void dfsh_parse_pkt(struct tty_struct *tty, unsigned char c)
{
struct dfsh_state *st = tty->disc_data;
uint32_t crc;
unsigned int data_i;
unsigned int ts_i;
int snsr_id;
int64_t ts;
struct timespec k_ts;
s64 k_ts_ns;
static s64 prev_ktime;
static s64 prev_mcutime;
struct sensor_sync_pkt_t sensor_sync_pkt;
int cookie;
/* sanity check index */
if (st->pkt_byte_idx >= sizeof(st->pkt_buf))
/* Reset if byte index longer than longest packet */
st->pkt_byte_idx = 0;
st->pkt_buf[st->pkt_byte_idx] = c;
switch (st->pkt_byte_idx++) {
case 0:
/* expecting Magic value */
if (c != SENSOR_HUB_START) {
st->pkt_byte_idx = 0;
pr_debug("sh_ldisc: msg start not recvd 0x%x\n", c);
}
break;
case 1:
/* Expecting message type */
snsr_id = dfsh_msg_id2snsr_id(c);
/* Calc payload len from msg type */
if (snsr_id >= 0)
st->pyld_len = pkt_payload_len(c);
else if (c == MSG_MCU)
st->pyld_len = sizeof(struct mcu_payload_t);
else
st->pkt_byte_idx = 0;
break;
default:
/* Nothing to do until last byte has been received */
if (st->pkt_byte_idx == (sizeof(struct dfsh_pkt_hdr_t) +
st->pyld_len + CRC_SIZE)) {
/* validate packet crc */
crc = pkt_crc(st->pkt_buf, CRC_DATA_SZ(st->pyld_len));
if (crc == CRC(st->pkt_buf, st->pyld_len)) {
snsr_id = dfsh_msg_id2snsr_id(st->pkt.
header.type);
if (snsr_id >= 0) {
/* sensor data */
ts_i = sizeof(struct dfsh_pkt_hdr_t);
data_i = ts_i + (snsr_id ?
st->cfg[snsr_id].timestamp_sz:0);
/* sensor timestamp */
memcpy(&ts, &st->pkt_buf[ts_i],
sizeof(ts));
/*convert timestamp from usec to nsec*/
ts = ts * 1000;
ktime_get_ts64(&k_ts);
k_ts_ns = timespec_to_ns(&k_ts);
if (prev_mcutime == ts)
k_ts_ns = prev_ktime;
cookie = COOKIE(dfsh_msg_id2snsr_type(st->pkt.header.type),
k_ts_ns);
trace_async_atrace_begin(__func__, TRACE_SENSOR_ID, cookie);
if (st->pkt.header.type == MSG_CAMERA) {
st->nvs->handler
(st->nvs_st[snsr_id],
&ts,
k_ts_ns);
} else if (st->pkt.header.type ==
MSG_ACCEL || st->pkt.header.type
== MSG_GYRO) {
sensor_sync_pkt.timestamp = ts;
memcpy(&sensor_sync_pkt.
sensor_data,
&st->pkt_buf[data_i],
sizeof(sensor_sync_pkt.
sensor_data));
prev_ktime = k_ts_ns;
prev_mcutime = ts;
st->nvs->handler
(st->nvs_st[snsr_id],
&sensor_sync_pkt.
sensor_data,
k_ts_ns);
} else {
st->nvs->handler
(st->nvs_st[snsr_id],
&st->pkt_buf[data_i],
k_ts_ns);
}
trace_async_atrace_end(__func__, TRACE_SENSOR_ID, cookie);
} else if (st->pkt.header.type == MSG_MCU) {
/* message from MCU */
dev_dbg(tty->dev, "received MCU cmd response:%x\n",
st->pkt.payload.mcu_payload.rsp);
if ((st->pkt.payload.mcu_payload.rsp & RSP_MASK) ==
RSP_VER) {
st->fw_version = st->pkt.payload.mcu_payload.rsp;
dev_info(tty->dev, "MCU FW v.%u.%u.%u\n",
(st->fw_version >> 24 & 0xFF),
(st->fw_version >> 16 & 0xFF),
(st->fw_version >> 8 & 0xFF));
}
} else {
dfsh_err(st);
}
} else {
dfsh_err(st);
}
/* Packet de-muxed successfully or dropped.
* Clear to start over. */
st->pkt_byte_idx = 0;
st->pyld_len = 0;
}
break;
}
}
static void dfsh_receive_buf(struct tty_struct *tty, const unsigned char *cp,
char *fp, int count)
{
const unsigned char *p;
char *f;
char flags = TTY_NORMAL;
int i;
for (i = count, p = cp, f = fp; i; i--, p++) {
if (f)
flags = *f++;
switch (flags) {
case TTY_NORMAL:
dfsh_parse_pkt(tty, *p);
break;
case TTY_BREAK:
case TTY_PARITY:
case TTY_FRAME:
case TTY_OVERRUN:
dfsh_err(tty->disc_data);
pr_debug("sh_ldisc: tty ctrl\n");
/* Skip errors */
break;
default:
pr_err("sh_ldisc: %s: unknown flag %d\n",
tty_name(tty), flags);
break;
}
}
}
static int dfsh_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct dfsh_state *st = tty->disc_data;
int ret = -EFAULT;
switch (cmd) {
case TCFLSH:
/* flush our buffers and the serial port's buffer */
if (arg == TCIOFLUSH || arg == TCOFLUSH)
;
ret = n_tty_ioctl_helper(tty, file, cmd, arg);
break;
default:
ret = tty_mode_ioctl(tty, file, cmd, arg);
break;
}
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(tty->dev, "%s cmd=%u arg=%lu ret=%d\n",
__func__, cmd, arg, ret);
return ret;
}
static void dfsh_power_camera(bool on)
{
uint32_t cmd;
cmd = on ? CMD_CAM_PWR_ON : CMD_CAM_PWR_OFF;
dfsh_write_cmd(st, (uint8_t *)&cmd, sizeof(cmd));
}
static void dfsh_shutdown(struct tty_struct *tty)
{
struct dfsh_state *st = tty->disc_data;
unsigned int i;
st->sts |= NVS_STS_SHUTDOWN;
if (st->nvs) {
for (i = 0; i < DEV_N; i++) {
if (st->nvs_st[i])
st->nvs->shutdown(st->nvs_st[i]);
}
}
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(tty->dev, "%s\n", __func__);
}
static void dfsh_close(struct tty_struct *tty)
{
struct dfsh_state *st = tty->disc_data;
unsigned int i;
dfsh_power_camera(false);
if (st != NULL) {
st->tty_close = true;
dfsh_shutdown(tty);
if (st->nvs) {
for (i = 0; i < DEV_N; i++) {
if (st->nvs_st[i])
st->nvs->remove(st->nvs_st[i]);
}
}
dfsh_pm_exit(st);
}
dev_info(tty->dev, "%s\n", __func__);
}
static int dfsh_of_dt(struct dfsh_state *st, struct device_node *dn)
{
if (!of_device_is_available(dn))
return -ENODEV;
/* default parameters */
st->gpio_rst = -1;
st->gpio_boot0 = -1;
/* device tree parameters */
if (dn) {
if (!of_property_read_s32(dn, "gpio_reset_assert_polarity",
&st->gpio_rst_asrt_pol))
st->gpio_rst_asrt_pol = !!st->gpio_rst_asrt_pol;
st->gpio_rst = of_get_named_gpio(dn,
"dfsh,reset-gpio", 0);
st->gpio_boot0 = of_get_named_gpio(dn,
"dfsh,boot0-gpio", 0);
st->no_sensors = of_property_read_bool(dn, "no_sensors");
}
/* initialize GPIO */
if (gpio_is_valid(st->gpio_boot0) && gpio_is_valid(st->gpio_rst)) {
if (gpio_request(st->gpio_boot0, "dfsh_boot0") ||
gpio_request(st->gpio_rst, "dfsh_reset")) {
dev_err(&st->pdev->dev, "cannot request gpio\n");
return -EPROBE_DEFER;
}
if (gpio_direction_output(st->gpio_boot0, 0) ||
gpio_direction_output(st->gpio_rst, 0)) {
dev_err(&st->pdev->dev, "cannot set gpio\n");
return -EPROBE_DEFER;
}
gpio_export(st->gpio_boot0, 1);
gpio_export(st->gpio_rst, 1);
}
return 0;
}
static int dfsh_open(struct tty_struct *tty)
{
uint32_t cmd = CMD_VERSION;
uint8_t i, n;
int ret;
dev_info(tty->dev, "%s\n", __func__);
memcpy(&st->cfg, &snsr_list, sizeof(st->cfg));
for (i = 0; i < DEV_N; i++)
nvs_of_dt(st->pdev->dev.of_node, &st->cfg[i], NULL);
dfsh_fn_dev.sts = &st->sts;
dfsh_fn_dev.errs = &st->errs;
if (!st->no_sensors) {
st->nvs = nvs_iio();
if (st->nvs == NULL) {
ret = -ENODEV;
goto dfsh_open_err;
}
n = 0;
for (i = 0; i < DEV_N; i++) {
ret = st->nvs->probe(&st->nvs_st[i], st, tty->dev,
&dfsh_fn_dev, &st->cfg[i]);
if (!ret) {
st->cfg[i].snsr_id = i;
n++;
}
}
if (!n) {
dev_err(tty->dev, "%s nvs_probe ERR\n", __func__);
ret = -ENODEV;
goto dfsh_open_err;
}
}
tty->disc_data = st;
tty->receive_room = N_TTY_BUF_SIZE;
st->tty = tty;
st->tty_close = false;
mutex_init(&st->tty_write_lock);
/* Get MCU firmware version */
dfsh_write_cmd(st, (uint8_t *)&cmd, sizeof(cmd));
dfsh_power_camera(true);
dev_info(tty->dev, "%s done\n", __func__);
return 0;
dfsh_open_err:
dev_err(tty->dev, "%s ERR %d\n", __func__, ret);
return ret;
}
static struct tty_ldisc_ops dfsh_tty_ldisc_ops = {
.owner = THIS_MODULE,
.magic = TTY_LDISC_MAGIC,
.name = DFSH_NAME,
.open = dfsh_open,
.close = dfsh_close,
.ioctl = dfsh_ioctl,
.receive_buf = dfsh_receive_buf,
};
static struct of_device_id dfsh_of_match[] = {
{ .compatible = "nvidia,tegra186-dfsh" },
{ },
};
static int dfsh_probe(struct platform_device *pdev)
{
int ret;
dev_info(&pdev->dev, "%s\n", __func__);
st = devm_kzalloc(&pdev->dev, sizeof(struct dfsh_state), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->pdev = pdev;
platform_set_drvdata(pdev, st);
ret = dfsh_of_dt(st, pdev->dev.of_node);
if (ret) {
if (ret == -ENODEV) {
dev_info(&pdev->dev, "%s DT disabled\n", __func__);
} else {
dev_err(&pdev->dev, "%s _of_dt ERR\n", __func__);
ret = -ENODEV;
}
goto dfsh_open_err;
}
dfsh_pm_init(st);
dev_info(&pdev->dev, "%s done\n", __func__);
ret = tty_register_ldisc(N_NVS_DFSH, &dfsh_tty_ldisc_ops);
return ret;
dfsh_open_err:
dev_err(&pdev->dev, "%s ERR %d\n", __func__, ret);
return ret;
}
static int dfsh_remove(struct platform_device *pdev)
{
struct dfsh_state *st = platform_get_drvdata(pdev);
int ret = tty_unregister_ldisc(N_NVS_DFSH);
if (ret)
pr_err("%s ERR=%d\n", __func__, ret);
gpio_free(st->gpio_rst);
gpio_free(st->gpio_boot0);
kfree(st);
return 0;
}
static struct platform_driver dfsh_driver = {
.driver = {
.name = DFSH_NAME,
.of_match_table = of_match_ptr(dfsh_of_match),
},
.probe = dfsh_probe,
.remove = dfsh_remove,
};
module_platform_driver(dfsh_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("NVS line discipline driver for DFSH");
MODULE_AUTHOR("NVIDIA Corporation");