Jetpack/kernel/kernel-4.9/sound/pci/emu10k1/memory.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

582 lines
16 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
*
* EMU10K1 memory page allocation (PTB area)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/time.h>
#include <linux/mutex.h>
#include <linux/export.h>
#include <sound/core.h>
#include <sound/emu10k1.h>
/* page arguments of these two macros are Emu page (4096 bytes), not like
* aligned pages in others
*/
#define __set_ptb_entry(emu,page,addr) \
(((u32 *)(emu)->ptb_pages.area)[page] = cpu_to_le32(((addr) << (emu->address_mode)) | (page)))
#define UNIT_PAGES (PAGE_SIZE / EMUPAGESIZE)
#define MAX_ALIGN_PAGES0 (MAXPAGES0 / UNIT_PAGES)
#define MAX_ALIGN_PAGES1 (MAXPAGES1 / UNIT_PAGES)
/* get aligned page from offset address */
#define get_aligned_page(offset) ((offset) >> PAGE_SHIFT)
/* get offset address from aligned page */
#define aligned_page_offset(page) ((page) << PAGE_SHIFT)
#if PAGE_SIZE == 4096
/* page size == EMUPAGESIZE */
/* fill PTB entrie(s) corresponding to page with addr */
#define set_ptb_entry(emu,page,addr) __set_ptb_entry(emu,page,addr)
/* fill PTB entrie(s) corresponding to page with silence pointer */
#define set_silent_ptb(emu,page) __set_ptb_entry(emu,page,emu->silent_page.addr)
#else
/* fill PTB entries -- we need to fill UNIT_PAGES entries */
static inline void set_ptb_entry(struct snd_emu10k1 *emu, int page, dma_addr_t addr)
{
int i;
page *= UNIT_PAGES;
for (i = 0; i < UNIT_PAGES; i++, page++) {
__set_ptb_entry(emu, page, addr);
addr += EMUPAGESIZE;
}
}
static inline void set_silent_ptb(struct snd_emu10k1 *emu, int page)
{
int i;
page *= UNIT_PAGES;
for (i = 0; i < UNIT_PAGES; i++, page++)
/* do not increment ptr */
__set_ptb_entry(emu, page, emu->silent_page.addr);
}
#endif /* PAGE_SIZE */
/*
*/
static int synth_alloc_pages(struct snd_emu10k1 *hw, struct snd_emu10k1_memblk *blk);
static int synth_free_pages(struct snd_emu10k1 *hw, struct snd_emu10k1_memblk *blk);
#define get_emu10k1_memblk(l,member) list_entry(l, struct snd_emu10k1_memblk, member)
/* initialize emu10k1 part */
static void emu10k1_memblk_init(struct snd_emu10k1_memblk *blk)
{
blk->mapped_page = -1;
INIT_LIST_HEAD(&blk->mapped_link);
INIT_LIST_HEAD(&blk->mapped_order_link);
blk->map_locked = 0;
blk->first_page = get_aligned_page(blk->mem.offset);
blk->last_page = get_aligned_page(blk->mem.offset + blk->mem.size - 1);
blk->pages = blk->last_page - blk->first_page + 1;
}
/*
* search empty region on PTB with the given size
*
* if an empty region is found, return the page and store the next mapped block
* in nextp
* if not found, return a negative error code.
*/
static int search_empty_map_area(struct snd_emu10k1 *emu, int npages, struct list_head **nextp)
{
int page = 0, found_page = -ENOMEM;
int max_size = npages;
int size;
struct list_head *candidate = &emu->mapped_link_head;
struct list_head *pos;
list_for_each (pos, &emu->mapped_link_head) {
struct snd_emu10k1_memblk *blk = get_emu10k1_memblk(pos, mapped_link);
if (blk->mapped_page < 0)
continue;
size = blk->mapped_page - page;
if (size == npages) {
*nextp = pos;
return page;
}
else if (size > max_size) {
/* we look for the maximum empty hole */
max_size = size;
candidate = pos;
found_page = page;
}
page = blk->mapped_page + blk->pages;
}
size = (emu->address_mode ? MAX_ALIGN_PAGES1 : MAX_ALIGN_PAGES0) - page;
if (size >= max_size) {
*nextp = pos;
return page;
}
*nextp = candidate;
return found_page;
}
/*
* map a memory block onto emu10k1's PTB
*
* call with memblk_lock held
*/
static int map_memblk(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk)
{
int page, pg;
struct list_head *next;
page = search_empty_map_area(emu, blk->pages, &next);
if (page < 0) /* not found */
return page;
/* insert this block in the proper position of mapped list */
list_add_tail(&blk->mapped_link, next);
/* append this as a newest block in order list */
list_add_tail(&blk->mapped_order_link, &emu->mapped_order_link_head);
blk->mapped_page = page;
/* fill PTB */
for (pg = blk->first_page; pg <= blk->last_page; pg++) {
set_ptb_entry(emu, page, emu->page_addr_table[pg]);
page++;
}
return 0;
}
/*
* unmap the block
* return the size of resultant empty pages
*
* call with memblk_lock held
*/
static int unmap_memblk(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk)
{
int start_page, end_page, mpage, pg;
struct list_head *p;
struct snd_emu10k1_memblk *q;
/* calculate the expected size of empty region */
if ((p = blk->mapped_link.prev) != &emu->mapped_link_head) {
q = get_emu10k1_memblk(p, mapped_link);
start_page = q->mapped_page + q->pages;
} else
start_page = 0;
if ((p = blk->mapped_link.next) != &emu->mapped_link_head) {
q = get_emu10k1_memblk(p, mapped_link);
end_page = q->mapped_page;
} else
end_page = (emu->address_mode ? MAX_ALIGN_PAGES1 : MAX_ALIGN_PAGES0);
/* remove links */
list_del(&blk->mapped_link);
list_del(&blk->mapped_order_link);
/* clear PTB */
mpage = blk->mapped_page;
for (pg = blk->first_page; pg <= blk->last_page; pg++) {
set_silent_ptb(emu, mpage);
mpage++;
}
blk->mapped_page = -1;
return end_page - start_page; /* return the new empty size */
}
/*
* search empty pages with the given size, and create a memory block
*
* unlike synth_alloc the memory block is aligned to the page start
*/
static struct snd_emu10k1_memblk *
search_empty(struct snd_emu10k1 *emu, int size)
{
struct list_head *p;
struct snd_emu10k1_memblk *blk;
int page, psize;
psize = get_aligned_page(size + PAGE_SIZE -1);
page = 0;
list_for_each(p, &emu->memhdr->block) {
blk = get_emu10k1_memblk(p, mem.list);
if (page + psize <= blk->first_page)
goto __found_pages;
page = blk->last_page + 1;
}
if (page + psize > emu->max_cache_pages)
return NULL;
__found_pages:
/* create a new memory block */
blk = (struct snd_emu10k1_memblk *)__snd_util_memblk_new(emu->memhdr, psize << PAGE_SHIFT, p->prev);
if (blk == NULL)
return NULL;
blk->mem.offset = aligned_page_offset(page); /* set aligned offset */
emu10k1_memblk_init(blk);
return blk;
}
/*
* check if the given pointer is valid for pages
*/
static int is_valid_page(struct snd_emu10k1 *emu, dma_addr_t addr)
{
if (addr & ~emu->dma_mask) {
dev_err_ratelimited(emu->card->dev,
"max memory size is 0x%lx (addr = 0x%lx)!!\n",
emu->dma_mask, (unsigned long)addr);
return 0;
}
if (addr & (EMUPAGESIZE-1)) {
dev_err_ratelimited(emu->card->dev, "page is not aligned\n");
return 0;
}
return 1;
}
/*
* map the given memory block on PTB.
* if the block is already mapped, update the link order.
* if no empty pages are found, tries to release unused memory blocks
* and retry the mapping.
*/
int snd_emu10k1_memblk_map(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk)
{
int err;
int size;
struct list_head *p, *nextp;
struct snd_emu10k1_memblk *deleted;
unsigned long flags;
spin_lock_irqsave(&emu->memblk_lock, flags);
if (blk->mapped_page >= 0) {
/* update order link */
list_move_tail(&blk->mapped_order_link,
&emu->mapped_order_link_head);
spin_unlock_irqrestore(&emu->memblk_lock, flags);
return 0;
}
if ((err = map_memblk(emu, blk)) < 0) {
/* no enough page - try to unmap some blocks */
/* starting from the oldest block */
p = emu->mapped_order_link_head.next;
for (; p != &emu->mapped_order_link_head; p = nextp) {
nextp = p->next;
deleted = get_emu10k1_memblk(p, mapped_order_link);
if (deleted->map_locked)
continue;
size = unmap_memblk(emu, deleted);
if (size >= blk->pages) {
/* ok the empty region is enough large */
err = map_memblk(emu, blk);
break;
}
}
}
spin_unlock_irqrestore(&emu->memblk_lock, flags);
return err;
}
EXPORT_SYMBOL(snd_emu10k1_memblk_map);
/*
* page allocation for DMA
*/
struct snd_util_memblk *
snd_emu10k1_alloc_pages(struct snd_emu10k1 *emu, struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_util_memhdr *hdr;
struct snd_emu10k1_memblk *blk;
int page, err, idx;
if (snd_BUG_ON(!emu))
return NULL;
if (snd_BUG_ON(runtime->dma_bytes <= 0 ||
runtime->dma_bytes >= (emu->address_mode ? MAXPAGES1 : MAXPAGES0) * EMUPAGESIZE))
return NULL;
hdr = emu->memhdr;
if (snd_BUG_ON(!hdr))
return NULL;
idx = runtime->period_size >= runtime->buffer_size ?
(emu->delay_pcm_irq * 2) : 0;
mutex_lock(&hdr->block_mutex);
blk = search_empty(emu, runtime->dma_bytes + idx);
if (blk == NULL) {
mutex_unlock(&hdr->block_mutex);
return NULL;
}
/* fill buffer addresses but pointers are not stored so that
* snd_free_pci_page() is not called in in synth_free()
*/
idx = 0;
for (page = blk->first_page; page <= blk->last_page; page++, idx++) {
unsigned long ofs = idx << PAGE_SHIFT;
dma_addr_t addr;
if (ofs >= runtime->dma_bytes)
addr = emu->silent_page.addr;
else
addr = snd_pcm_sgbuf_get_addr(substream, ofs);
if (! is_valid_page(emu, addr)) {
dev_err_ratelimited(emu->card->dev,
"emu: failure page = %d\n", idx);
mutex_unlock(&hdr->block_mutex);
return NULL;
}
emu->page_addr_table[page] = addr;
emu->page_ptr_table[page] = NULL;
}
/* set PTB entries */
blk->map_locked = 1; /* do not unmap this block! */
err = snd_emu10k1_memblk_map(emu, blk);
if (err < 0) {
__snd_util_mem_free(hdr, (struct snd_util_memblk *)blk);
mutex_unlock(&hdr->block_mutex);
return NULL;
}
mutex_unlock(&hdr->block_mutex);
return (struct snd_util_memblk *)blk;
}
/*
* release DMA buffer from page table
*/
int snd_emu10k1_free_pages(struct snd_emu10k1 *emu, struct snd_util_memblk *blk)
{
if (snd_BUG_ON(!emu || !blk))
return -EINVAL;
return snd_emu10k1_synth_free(emu, blk);
}
/*
* memory allocation using multiple pages (for synth)
* Unlike the DMA allocation above, non-contiguous pages are assined.
*/
/*
* allocate a synth sample area
*/
struct snd_util_memblk *
snd_emu10k1_synth_alloc(struct snd_emu10k1 *hw, unsigned int size)
{
struct snd_emu10k1_memblk *blk;
struct snd_util_memhdr *hdr = hw->memhdr;
mutex_lock(&hdr->block_mutex);
blk = (struct snd_emu10k1_memblk *)__snd_util_mem_alloc(hdr, size);
if (blk == NULL) {
mutex_unlock(&hdr->block_mutex);
return NULL;
}
if (synth_alloc_pages(hw, blk)) {
__snd_util_mem_free(hdr, (struct snd_util_memblk *)blk);
mutex_unlock(&hdr->block_mutex);
return NULL;
}
snd_emu10k1_memblk_map(hw, blk);
mutex_unlock(&hdr->block_mutex);
return (struct snd_util_memblk *)blk;
}
EXPORT_SYMBOL(snd_emu10k1_synth_alloc);
/*
* free a synth sample area
*/
int
snd_emu10k1_synth_free(struct snd_emu10k1 *emu, struct snd_util_memblk *memblk)
{
struct snd_util_memhdr *hdr = emu->memhdr;
struct snd_emu10k1_memblk *blk = (struct snd_emu10k1_memblk *)memblk;
unsigned long flags;
mutex_lock(&hdr->block_mutex);
spin_lock_irqsave(&emu->memblk_lock, flags);
if (blk->mapped_page >= 0)
unmap_memblk(emu, blk);
spin_unlock_irqrestore(&emu->memblk_lock, flags);
synth_free_pages(emu, blk);
__snd_util_mem_free(hdr, memblk);
mutex_unlock(&hdr->block_mutex);
return 0;
}
EXPORT_SYMBOL(snd_emu10k1_synth_free);
/* check new allocation range */
static void get_single_page_range(struct snd_util_memhdr *hdr,
struct snd_emu10k1_memblk *blk,
int *first_page_ret, int *last_page_ret)
{
struct list_head *p;
struct snd_emu10k1_memblk *q;
int first_page, last_page;
first_page = blk->first_page;
if ((p = blk->mem.list.prev) != &hdr->block) {
q = get_emu10k1_memblk(p, mem.list);
if (q->last_page == first_page)
first_page++; /* first page was already allocated */
}
last_page = blk->last_page;
if ((p = blk->mem.list.next) != &hdr->block) {
q = get_emu10k1_memblk(p, mem.list);
if (q->first_page == last_page)
last_page--; /* last page was already allocated */
}
*first_page_ret = first_page;
*last_page_ret = last_page;
}
/* release allocated pages */
static void __synth_free_pages(struct snd_emu10k1 *emu, int first_page,
int last_page)
{
int page;
for (page = first_page; page <= last_page; page++) {
free_page((unsigned long)emu->page_ptr_table[page]);
emu->page_addr_table[page] = 0;
emu->page_ptr_table[page] = NULL;
}
}
/*
* allocate kernel pages
*/
static int synth_alloc_pages(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk)
{
int page, first_page, last_page;
emu10k1_memblk_init(blk);
get_single_page_range(emu->memhdr, blk, &first_page, &last_page);
/* allocate kernel pages */
for (page = first_page; page <= last_page; page++) {
/* first try to allocate from <4GB zone */
struct page *p = alloc_page(GFP_KERNEL | GFP_DMA32 |
__GFP_NOWARN);
if (!p || (page_to_pfn(p) & ~(emu->dma_mask >> PAGE_SHIFT))) {
if (p)
__free_page(p);
/* try to allocate from <16MB zone */
p = alloc_page(GFP_ATOMIC | GFP_DMA |
__GFP_NORETRY | /* no OOM-killer */
__GFP_NOWARN);
}
if (!p) {
__synth_free_pages(emu, first_page, page - 1);
return -ENOMEM;
}
emu->page_addr_table[page] = page_to_phys(p);
emu->page_ptr_table[page] = page_address(p);
}
return 0;
}
/*
* free pages
*/
static int synth_free_pages(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk)
{
int first_page, last_page;
get_single_page_range(emu->memhdr, blk, &first_page, &last_page);
__synth_free_pages(emu, first_page, last_page);
return 0;
}
/* calculate buffer pointer from offset address */
static inline void *offset_ptr(struct snd_emu10k1 *emu, int page, int offset)
{
char *ptr;
if (snd_BUG_ON(page < 0 || page >= emu->max_cache_pages))
return NULL;
ptr = emu->page_ptr_table[page];
if (! ptr) {
dev_err(emu->card->dev,
"access to NULL ptr: page = %d\n", page);
return NULL;
}
ptr += offset & (PAGE_SIZE - 1);
return (void*)ptr;
}
/*
* bzero(blk + offset, size)
*/
int snd_emu10k1_synth_bzero(struct snd_emu10k1 *emu, struct snd_util_memblk *blk,
int offset, int size)
{
int page, nextofs, end_offset, temp, temp1;
void *ptr;
struct snd_emu10k1_memblk *p = (struct snd_emu10k1_memblk *)blk;
offset += blk->offset & (PAGE_SIZE - 1);
end_offset = offset + size;
page = get_aligned_page(offset);
do {
nextofs = aligned_page_offset(page + 1);
temp = nextofs - offset;
temp1 = end_offset - offset;
if (temp1 < temp)
temp = temp1;
ptr = offset_ptr(emu, page + p->first_page, offset);
if (ptr)
memset(ptr, 0, temp);
offset = nextofs;
page++;
} while (offset < end_offset);
return 0;
}
EXPORT_SYMBOL(snd_emu10k1_synth_bzero);
/*
* copy_from_user(blk + offset, data, size)
*/
int snd_emu10k1_synth_copy_from_user(struct snd_emu10k1 *emu, struct snd_util_memblk *blk,
int offset, const char __user *data, int size)
{
int page, nextofs, end_offset, temp, temp1;
void *ptr;
struct snd_emu10k1_memblk *p = (struct snd_emu10k1_memblk *)blk;
offset += blk->offset & (PAGE_SIZE - 1);
end_offset = offset + size;
page = get_aligned_page(offset);
do {
nextofs = aligned_page_offset(page + 1);
temp = nextofs - offset;
temp1 = end_offset - offset;
if (temp1 < temp)
temp = temp1;
ptr = offset_ptr(emu, page + p->first_page, offset);
if (ptr && copy_from_user(ptr, data, temp))
return -EFAULT;
offset = nextofs;
data += temp;
page++;
} while (offset < end_offset);
return 0;
}
EXPORT_SYMBOL(snd_emu10k1_synth_copy_from_user);