Jetpack/kernel/nvidia/drivers/mtd/devices/tegra_hv_mtd.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

623 lines
16 KiB
C

/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/errno.h> /* error codes */
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/completion.h>
#include <linux/mtd/partitions.h>
#include <linux/tegra-ivc.h>
#include <soc/tegra/chip-id.h>
#include <tegra_virt_storage_spec.h>
struct vmtd_dev {
struct vs_config_info config;
uint64_t size; /* Device size in bytes */
uint32_t ivc_id;
uint32_t ivm_id;
struct tegra_hv_ivc_cookie *ivck;
struct tegra_hv_ivm_cookie *ivmk;
struct device *device;
void *shared_buffer;
struct mutex lock;
struct completion msg_complete;
void *cmd_frame;
struct mtd_info mtd;
bool is_setup;
};
#define IVC_RESET_RETRIES 30
static inline struct vmtd_dev *mtd_to_vmtd(struct mtd_info *mtd)
{
return container_of(mtd, struct vmtd_dev, mtd);
}
static irqreturn_t ivc_irq_handler(int irq, void *data)
{
struct vmtd_dev *vmtddev = (struct vmtd_dev *)data;
complete(&vmtddev->msg_complete);
return IRQ_HANDLED;
}
static int vmtd_send_cmd(struct vmtd_dev *vmtddev, struct vs_request *vs_req)
{
/* This while loop exits as long as the remote endpoint cooperates. */
while (tegra_hv_ivc_channel_notified(vmtddev->ivck) != 0) {
wait_for_completion(&vmtddev->msg_complete);
}
while (!tegra_hv_ivc_can_write(vmtddev->ivck)) {
wait_for_completion(&vmtddev->msg_complete);
}
if (tegra_hv_ivc_write(vmtddev->ivck, vs_req,
sizeof(struct vs_request)) != sizeof(struct vs_request)) {
dev_err(vmtddev->device, "Request sending failed!\n");
return -EIO;
}
return 0;
}
static int vmtd_get_resp(struct vmtd_dev *vmtddev, struct vs_request *vs_req)
{
/* This while loop exits as long as the remote endpoint cooperates. */
while (tegra_hv_ivc_channel_notified(vmtddev->ivck) != 0) {
wait_for_completion(&vmtddev->msg_complete);
}
while (!tegra_hv_ivc_can_read(vmtddev->ivck)) {
wait_for_completion(&vmtddev->msg_complete);
}
if (tegra_hv_ivc_read(vmtddev->ivck, vs_req,
sizeof(struct vs_request)) != sizeof(struct vs_request)) {
dev_err(vmtddev->device, "Response fetching failed!\n");
return -EIO;
}
return 0;
}
static int vmtd_process_request(struct vmtd_dev *vmtddev,
struct vs_request *vs_req)
{
uint32_t num_bytes = vs_req->mtddev_req.mtd_req.size;
loff_t offset = vs_req->mtddev_req.mtd_req.offset;
int32_t ret = 0;
ret = vmtd_send_cmd(vmtddev, vs_req);
if (ret != 0) {
dev_err(vmtddev->device,
"Sending %d failed!\n",
vs_req->mtddev_req.req_op);
goto fail;
}
vs_req = (struct vs_request *)vmtddev->cmd_frame;
ret = vmtd_get_resp(vmtddev, vs_req);
if (ret != 0) {
dev_err(vmtddev->device,
"fetching response failed!\n");
goto fail;
}
if ((vs_req->status != 0) ||
(vs_req->mtddev_resp.mtd_resp.status != 0)) {
dev_err(vmtddev->device,
"Response status for offset %llx size %x failed!\n",
offset, num_bytes);
ret = -EIO;
goto fail;
}
if (vs_req->mtddev_resp.mtd_resp.size != num_bytes) {
dev_err(vmtddev->device,
"size mismatch for offset %llx size %x returned %x!\n",
offset, num_bytes,
vs_req->mtddev_resp.mtd_resp.size);
ret = -EIO;
goto fail;
}
fail:
return ret;
}
static int vmtd_get_configinfo(struct vmtd_dev *vmtddev,
struct vs_config_info *config)
{
struct vs_request *vs_req = (struct vs_request *)vmtddev->cmd_frame;
/* This while loop exits as long as the remote endpoint cooperates. */
while (!tegra_hv_ivc_can_read(vmtddev->ivck)) {
wait_for_completion(&vmtddev->msg_complete);
}
if (!tegra_hv_ivc_read(vmtddev->ivck, vs_req,
sizeof(struct vs_request))) {
dev_err(vmtddev->device, "config fetching failed!\n");
return -EIO;
}
if (vs_req->status != 0) {
dev_err(vmtddev->device, "Config fetch request failed!\n");
return -EINVAL;
}
*config = vs_req->config_info;
return 0;
}
/*
* Read an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int vmtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct vmtd_dev *vmtddev = mtd_to_vmtd(mtd);
struct vs_request *vs_req;
size_t remaining_size = len;
size_t read_size;
u_char *buf_addr = buf;
loff_t offset = from;
int32_t ret = 0;
dev_dbg(vmtddev->device, "%s from 0x%llx, len %zd\n",
__func__, offset, remaining_size);
if (((offset + remaining_size) < offset) ||
((offset + remaining_size) > vmtddev->mtd.size)) {
dev_err(vmtddev->device,
"from %llx len %lx out of range!\n", offset,
remaining_size);
return -EPERM;
}
mutex_lock(&vmtddev->lock);
while (remaining_size) {
read_size = min(
(size_t)vmtddev->config.mtd_config.max_read_bytes_per_io,
remaining_size);
vs_req = (struct vs_request *)vmtddev->cmd_frame;
vs_req->type = VS_DATA_REQ;
vs_req->mtddev_req.req_op = VS_MTD_READ;
vs_req->mtddev_req.mtd_req.offset = offset;
vs_req->mtddev_req.mtd_req.size = read_size;
vs_req->mtddev_req.mtd_req.data_offset = 0;
vs_req->req_id = 0;
ret = vmtd_process_request(vmtddev, vs_req);
if (ret != 0)
{
dev_err(vmtddev->device,
"Read for offset %llx size %lx failed!\n",
offset, read_size);
goto fail;
}
memcpy(buf_addr, vmtddev->shared_buffer, read_size);
buf_addr += read_size;
offset += read_size;
remaining_size -= read_size;
}
*retlen = len;
fail:
mutex_unlock(&vmtddev->lock);
return ret;
}
/*
* Write an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int vmtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct vmtd_dev *vmtddev = mtd_to_vmtd(mtd);
struct vs_request *vs_req;
size_t remaining_size = len;
size_t write_size;
const u_char *buf_addr = buf;
loff_t offset = to;
int32_t ret = 0;
dev_dbg(vmtddev->device, "%s from 0x%08x, len %zd\n",
__func__, (u32)offset, remaining_size);
if (((offset + remaining_size) < offset) ||
((offset + remaining_size) > vmtddev->mtd.size)) {
dev_err(vmtddev->device, "to %llx len %lx out of range!\n",
offset, remaining_size);
return -EPERM;
}
mutex_lock(&vmtddev->lock);
while (remaining_size) {
write_size = min(
(size_t)vmtddev->config.mtd_config.max_write_bytes_per_io,
remaining_size);
vs_req = (struct vs_request *)vmtddev->cmd_frame;
vs_req->type = VS_DATA_REQ;
vs_req->mtddev_req.req_op = VS_MTD_WRITE;
vs_req->mtddev_req.mtd_req.offset = offset;
vs_req->mtddev_req.mtd_req.size = write_size;
vs_req->mtddev_req.mtd_req.data_offset = 0;
vs_req->req_id = 0;
memcpy(vmtddev->shared_buffer, buf_addr, write_size);
ret = vmtd_process_request(vmtddev, vs_req);
if (ret != 0)
{
dev_err(vmtddev->device,
"write for offset %llx size %lx failed!\n",
offset, write_size);
goto fail;
}
buf_addr += write_size;
offset += write_size;
remaining_size -= write_size;
}
*retlen = len;
fail:
mutex_unlock(&vmtddev->lock);
return ret;
}
/*
* Erase an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int vmtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct vmtd_dev * vmtddev = mtd_to_vmtd(mtd);
struct vs_request *vs_req;
int32_t ret = 0;
dev_dbg(vmtddev->device, "%s from 0x%08x, len %llx\n",
__func__, (u32)instr->addr, instr->len);
if (((instr->addr + instr->len) < instr->addr) ||
((instr->addr + instr->len) > vmtddev->mtd.size)) {
dev_err(vmtddev->device, "addr %llx len %llx out of range!\n",
instr->addr, instr->len);
return -EPERM;
}
mutex_lock(&vmtddev->lock);
vs_req = (struct vs_request *)vmtddev->cmd_frame;
vs_req->type = VS_DATA_REQ;
vs_req->mtddev_req.req_op = VS_MTD_ERASE;
vs_req->mtddev_req.mtd_req.offset = instr->addr;
vs_req->mtddev_req.mtd_req.size = instr->len;
vs_req->mtddev_req.mtd_req.data_offset = 0;
vs_req->req_id = 0;
ret = vmtd_process_request(vmtddev, vs_req);
if (ret != 0) {
dev_err(vmtddev->device,
"Erase for offset %llx size %llx failed!\n",
instr->addr, instr->len);
mutex_unlock(&vmtddev->lock);
goto fail;
}
mutex_unlock(&vmtddev->lock);
mtd_erase_callback(instr);
fail:
if (ret != 0)
instr->state = MTD_ERASE_FAILED;
else
instr->state = MTD_ERASE_DONE;
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int tegra_virt_mtd_suspend(struct device *dev)
{
struct vmtd_dev *vmtddev = dev_get_drvdata(dev);
if (vmtddev->is_setup) {
mutex_lock(&vmtddev->lock);
disable_irq(vmtddev->ivck->irq);
/* Reset the channel */
tegra_hv_ivc_channel_reset(vmtddev->ivck);
}
return 0;
}
static int tegra_virt_mtd_resume(struct device *dev)
{
struct vmtd_dev *vmtddev = dev_get_drvdata(dev);
if (vmtddev->is_setup) {
enable_irq(vmtddev->ivck->irq);
mutex_unlock(&vmtddev->lock);
}
return 0;
}
static const struct dev_pm_ops tegra_hv_vmtd_pm_ops = {
.suspend = tegra_virt_mtd_suspend,
.resume = tegra_virt_mtd_resume,
};
#endif /* CONFIG_PM_SLEEP */
static int vmtd_setup_device(struct vmtd_dev *vmtddev)
{
mutex_init(&vmtddev->lock);
vmtddev->mtd.name = "virt_mtd";
vmtddev->mtd.type = MTD_NORFLASH;
vmtddev->mtd.writesize = 1;
vmtddev->mtd.flags = MTD_CAP_NORFLASH;
vmtddev->mtd.size = vmtddev->config.mtd_config.size;
dev_info(vmtddev->device, "size %lld!\n",
vmtddev->config.mtd_config.size);
vmtddev->mtd._erase = vmtd_erase;
vmtddev->mtd._read = vmtd_read;
vmtddev->mtd._write = vmtd_write;
vmtddev->mtd.erasesize = vmtddev->config.mtd_config.erase_size;
if (vmtddev->ivmk->size <
vmtddev->config.mtd_config.max_read_bytes_per_io) {
dev_info(vmtddev->device,
"Consider increasing mempool size to %d!\n",
vmtddev->config.mtd_config.max_read_bytes_per_io);
vmtddev->config.mtd_config.max_read_bytes_per_io =
vmtddev->ivmk->size;
}
if (vmtddev->ivmk->size <
vmtddev->config.mtd_config.max_write_bytes_per_io) {
dev_info(vmtddev->device,
"Consider increasing mempool size to %d!\n",
vmtddev->config.mtd_config.max_write_bytes_per_io);
vmtddev->config.mtd_config.max_write_bytes_per_io =
vmtddev->ivmk->size;
}
vmtddev->mtd.dev.parent = vmtddev->device;
vmtddev->mtd.writebufsize = 1;
mtd_set_of_node(&vmtddev->mtd, vmtddev->device->of_node);
return mtd_device_parse_register(&vmtddev->mtd, NULL, NULL,
NULL, 0);
}
static int32_t vmtd_init_device(struct vmtd_dev *vmtddev)
{
struct vs_request *vs_req = (struct vs_request *)vmtddev->cmd_frame;
uint32_t i = 0;
int32_t ret = 0;
/* This while loop exits as long as the remote endpoint cooperates. */
pr_notice("vmtd: send_config wait for ivc channel notified\n");
while (tegra_hv_ivc_channel_notified(vmtddev->ivck) != 0) {
if (i++ > IVC_RESET_RETRIES) {
dev_err(vmtddev->device, "ivc reset timeout\n");
return -ENOMEDIUM;
}
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(1));
}
vs_req->type = VS_CONFIGINFO_REQ;
dev_info(vmtddev->device, "send config cmd to ivc #%d\n",
vmtddev->ivc_id);
ret = vmtd_send_cmd(vmtddev, vs_req);
if (ret != 0) {
dev_err(vmtddev->device, "Sending %d failed!\n",
vs_req->type);
return ret;
}
ret = vmtd_get_configinfo(vmtddev, &vmtddev->config);
if (ret != 0) {
dev_err(vmtddev->device, "fetching configinfo failed!\n");
return ret;
}
if (vmtddev->config.type != VS_MTD_DEV) {
dev_err(vmtddev->device,
"Non mtd Config not supported - unexpected response!\n");
return -EINVAL;
}
if (vmtddev->config.mtd_config.size == 0) {
dev_err(vmtddev->device, "virtual storage device size 0!\n");
return -EINVAL;
}
ret = vmtd_setup_device(vmtddev);
if (ret != 0) {
dev_err(vmtddev->device,
"Setting up vmtd devices failed!\n");
return ret;
}
vmtddev->is_setup = true;
return ret;
}
static int tegra_virt_mtd_probe(struct platform_device *pdev)
{
struct device_node __maybe_unused *np;
struct device *dev = &pdev->dev;
struct vmtd_dev *vmtddev;
struct tegra_hv_ivm_cookie *ivmk;
int ret;
if (!is_tegra_hypervisor_mode()) {
dev_err(dev, "Not running on Drive Hypervisor!\n");
return -ENODEV;
}
np = dev->of_node;
if (np == NULL) {
dev_err(dev, "No of_node data\n");
return -ENODEV;
}
vmtddev = devm_kzalloc(dev, sizeof(struct vmtd_dev), GFP_KERNEL);
if (vmtddev == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, vmtddev);
vmtddev->device = dev;
if (of_property_read_u32_index(np, "ivc", 1,
&(vmtddev->ivc_id))) {
dev_err(dev, "Failed to read ivc property\n");
return -ENODEV;
}
if (of_property_read_u32_index(np, "mempool", 0,
&(vmtddev->ivm_id))) {
dev_err(dev, "Failed to read mempool property\n");
return -ENODEV;
}
vmtddev->ivck = tegra_hv_ivc_reserve(NULL, vmtddev->ivc_id, NULL);
if (IS_ERR_OR_NULL(vmtddev->ivck)) {
dev_err(dev, "Failed to reserve IVC channel %d\n",
vmtddev->ivc_id);
vmtddev->ivck = NULL;
return -ENODEV;
}
ivmk = tegra_hv_mempool_reserve(vmtddev->ivm_id);
if (IS_ERR_OR_NULL(ivmk)) {
dev_err(dev, "Failed to reserve IVM channel %d\n",
vmtddev->ivm_id);
ivmk = NULL;
ret = -ENODEV;
goto free_ivc;
}
vmtddev->ivmk = ivmk;
vmtddev->shared_buffer = devm_memremap(vmtddev->device,
ivmk->ipa, ivmk->size, MEMREMAP_WB);
if (IS_ERR_OR_NULL(vmtddev->shared_buffer)) {
dev_err(dev, "Failed to map mempool area %d\n",
vmtddev->ivm_id);
ret = -ENOMEM;
goto free_mempool;
}
if ((vmtddev->ivck->frame_size < sizeof(struct vs_request))) {
dev_err(dev, "Frame size %d less than ivc_req %ld!\n",
vmtddev->ivck->frame_size,
sizeof(struct vs_request));
ret = -ENOMEM;
goto free_mempool;
}
vmtddev->cmd_frame = devm_kmalloc(vmtddev->device,
vmtddev->ivck->frame_size, GFP_KERNEL);
if (vmtddev->cmd_frame == NULL) {
ret = -ENOMEM;
goto free_mempool;
}
init_completion(&vmtddev->msg_complete);
if (devm_request_irq(vmtddev->device, vmtddev->ivck->irq,
ivc_irq_handler, 0, "vmtd", vmtddev)) {
dev_err(dev, "Failed to request irq %d\n", vmtddev->ivck->irq);
ret = -EINVAL;
goto free_mempool;
}
tegra_hv_ivc_channel_reset(vmtddev->ivck);
if (vmtd_init_device(vmtddev) != 0) {
dev_err(dev, "Failed to initialize mtd device\n");
ret = -EINVAL;
goto free_mempool;
}
return 0;
free_mempool:
tegra_hv_mempool_unreserve(vmtddev->ivmk);
free_ivc:
tegra_hv_ivc_unreserve(vmtddev->ivck);
return ret;
}
static int tegra_virt_mtd_remove(struct platform_device *pdev)
{
struct vmtd_dev *vmtddev = platform_get_drvdata(pdev);
tegra_hv_ivc_unreserve(vmtddev->ivck);
tegra_hv_mempool_unreserve(vmtddev->ivmk);
return 0;
}
#ifdef CONFIG_OF
static struct of_device_id tegra_virt_mtd_match[] = {
{ .compatible = "nvidia,tegra-virt-mtd-storage", },
{},
};
MODULE_DEVICE_TABLE(of, tegra_virt_mtd_match);
#endif /* CONFIG_OF */
static struct platform_driver tegra_virt_mtd_driver = {
.probe = tegra_virt_mtd_probe,
.remove = tegra_virt_mtd_remove,
.driver = {
.name = "Virtual MTD device",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(tegra_virt_mtd_match),
#ifdef CONFIG_PM_SLEEP
.pm = &tegra_hv_vmtd_pm_ops,
#endif
},
};
module_platform_driver(tegra_virt_mtd_driver);
MODULE_AUTHOR("Vishal Annapurve <vannapurve@nvidia.com>");
MODULE_DESCRIPTION("VIRT MTD driver");
MODULE_LICENSE("GPL v2");