Jetpack/kernel/nvidia/drivers/iommu/arm-smmu-t19x.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

3407 lines
85 KiB
C

/*
* IOMMU API for ARM architected SMMU implementations.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2013 ARM Limited
* Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.
*
* Author: Will Deacon <will.deacon@arm.com>
*
* This driver currently supports:
* - SMMUv1 and v2 implementations
* - Stream-matching and stream-indexing
* - v7/v8 long-descriptor format
* - Non-secure access to the SMMU
* - 4k and 64k pages, with contiguous pte hints.
* - Up to 48-bit addressing (dependent on VA_BITS)
* - Context fault reporting
*/
#define pr_fmt(fmt) "t19x-arm-smmu: " fmt
#include <linux/delay.h>
#include <linux/dma-iommu.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_iommu.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/dma-attrs.h>
#include <soc/tegra/chip-id.h>
#include <linux/ktime.h>
#include <linux/string.h>
#include <linux/dma-override.h>
#include <linux/amba/bus.h>
#include <linux/version.h>
#include <linux/arm-smmu-suspend.h>
#include <asm/pgalloc.h>
#include <asm/dma-iommu.h>
#include <asm/pgtable.h>
#include <trace/events/arm_smmu.h>
#include "of_tegra-smmu.h" /* FIXME: to parse implicitly */
#include "arm-smmu-regs-t19x.h"
#include <dt-bindings/memory/tegra-swgroup.h>
#include <linux/platform/tegra/tegra-mc-sid.h>
#ifndef ENABLE_IOMMU_DMA_OPS
#define ENABLE_IOMMU_DMA_OPS 0
#endif
/* Maximum number of stream IDs assigned to a single device */
#define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS 128
/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS 128
#define MAX_SMMUS 4
#define NUM_SID 64
#define ALL_PGSIZES_BITMAP ((~0UL) & PAGE_MASK)
static int force_stage;
module_param_named(t19x_force_stage, force_stage, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(t19x_force_stage,
"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
static s8 debug_smmu_id;
enum arm_smmu_arch_version {
ARM_SMMU_V1 = 1,
ARM_SMMU_V2,
};
struct arm_smmu_smr {
u8 idx;
u16 mask;
u16 id;
};
struct arm_smmu_master_cfg {
int num_streamids;
u16 streamids[MAX_MASTER_STREAMIDS];
struct arm_smmu_smr *smrs;
};
struct arm_smmu_master {
struct device_node *of_node;
struct rb_node node;
struct arm_smmu_master_cfg *cfg;
struct dentry *debugfs_root;
};
struct arm_smmu_device {
struct device *dev;
void __iomem *base[MAX_SMMUS];
u32 base_pa[MAX_SMMUS];
u32 num_smmus;
s8 iso_smmu_id;
unsigned long size;
unsigned long pgshift;
#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
u32 features;
#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
u32 options;
enum arm_smmu_arch_version version;
u32 num_context_banks;
u32 num_s2_context_banks;
DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
atomic_t irptndx;
u32 num_mapping_groups;
DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
unsigned long s1_input_size;
unsigned long s1_output_size;
unsigned long s2_input_size;
unsigned long s2_output_size;
u32 num_global_irqs;
u32 num_context_irqs;
unsigned int *irqs;
struct list_head list;
struct rb_root masters;
struct dentry *masters_root;
struct dentry *debugfs_root;
struct debugfs_regset32 *regset;
struct debugfs_regset32 *perf_regset;
DECLARE_BITMAP(context_filter, ARM_SMMU_MAX_CBS);
};
struct arm_smmu_cfg {
u8 cbndx;
u8 irptndx;
u32 cbar;
pgd_t *pgd;
u32 iso_client_count;
u32 non_iso_client_count;
};
#define INVALID_IRPTNDX 0xff
#define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
struct arm_smmu_domain {
struct arm_smmu_device *smmu;
struct arm_smmu_cfg cfg;
spinlock_t lock;
dma_addr_t inquired_iova;
phys_addr_t inquired_phys;
struct iommu_domain domain;
};
static struct iommu_domain *iommu_domains[NUM_SID]; /* To keep all allocated domains */
static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);
static struct arm_smmu_device *smmu_handle; /* assmu only one smmu device */
static bool arm_smmu_skip_mapping; /* For debug */
static bool arm_smmu_gr0_tlbiallnsnh; /* Insert TLBIALLNSNH at all */
static bool arm_smmu_tlb_inv_by_addr = 1; /* debugfs: tlb inv context by default */
static bool arm_smmu_tlb_inv_at_map; /* debugfs: tlb inv at map additionally */
static void get_pte_info(struct arm_smmu_cfg *cfg, ulong iova,
pgdval_t *pgdval, pudval_t *pudval, pmdval_t *pmdval, pteval_t *pteval);
static inline void writel_single(u32 val, volatile void __iomem *virt_addr)
{
writel(val, virt_addr);
}
static inline void writel_relaxed_single(u32 val,
volatile void __iomem *virt_addr)
{
writel_relaxed(val, virt_addr);
}
static inline void writel_relaxed_iso(u32 val,
volatile void __iomem *virt_addr, bool iso_smmu)
{
int smmu_id, offset;
offset = abs(virt_addr - smmu_handle->base[0]);
if (iso_smmu) {
if (smmu_handle->iso_smmu_id < 0)
return;
writel_relaxed(val,
smmu_handle->base[smmu_handle->iso_smmu_id] + offset);
} else {
for (smmu_id = 0; smmu_id < smmu_handle->num_smmus; smmu_id++) {
if (smmu_id != smmu_handle->iso_smmu_id)
writel_relaxed(val,
smmu_handle->base[smmu_id] + offset);
}
}
}
static inline void writel_relaxed_cfg_iso(u64 val,
volatile void __iomem *virt_addr,
struct arm_smmu_cfg *cfg)
{
if (cfg->iso_client_count)
writel_relaxed_iso(val, virt_addr, 1);
if (cfg->non_iso_client_count)
writel_relaxed_iso(val, virt_addr, 0);
}
static inline void writeq_relaxed_iso(u64 val,
volatile void __iomem *virt_addr, bool iso_smmu)
{
int smmu_id, offset;
offset = abs(virt_addr - smmu_handle->base[0]);
if (iso_smmu) {
if (smmu_handle->iso_smmu_id < 0)
return;
writeq_relaxed(val,
smmu_handle->base[smmu_handle->iso_smmu_id] + offset);
} else {
for (smmu_id = 0; smmu_id < smmu_handle->num_smmus; smmu_id++) {
if (smmu_id != smmu_handle->iso_smmu_id)
writeq_relaxed(val,
smmu_handle->base[smmu_id] + offset);
}
}
}
static inline void writeq_relaxed_cfg_iso(u64 val,
volatile void __iomem *virt_addr,
struct arm_smmu_cfg *cfg)
{
if (cfg->iso_client_count)
writeq_relaxed_iso(val, virt_addr, 1);
if (cfg->non_iso_client_count)
writeq_relaxed_iso(val, virt_addr, 0);
}
#define WRITEL_FN(fn, call, type) \
static inline void fn(type val, volatile void __iomem *virt_addr) \
{ \
int smmu_id, offset; \
offset = abs(virt_addr - smmu_handle->base[0]); \
for (smmu_id = 0; smmu_id < smmu_handle->num_smmus; smmu_id++) \
call(val, smmu_handle->base[smmu_id] + offset); \
}
WRITEL_FN(writel_relaxed_all, writel_relaxed, u32);
WRITEL_FN(writeq_relaxed_all, writeq_relaxed, u64);
WRITEL_FN(writel_all, writel, u32);
#undef writel_relaxed
#undef writeq_relaxed
#undef writel
#define writel_relaxed writel_relaxed_all
#define writeq_relaxed writeq_relaxed_all
#define writel writel_all
void __weak platform_override_streamid(int streamid)
{
}
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova);
struct arm_smmu_option_prop {
u32 opt;
const char *prop;
};
static struct arm_smmu_option_prop arm_smmu_options[] = {
{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "-calxeda,smmu-secure-config-access" },
{ 0, NULL},
};
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
return container_of(dom, struct arm_smmu_domain, domain);
}
static void parse_driver_options(struct arm_smmu_device *smmu)
{
int i = 0;
do {
if (of_property_read_bool(smmu->dev->of_node,
arm_smmu_options[i].prop)) {
if (arm_smmu_options[i].prop[0] == '-')
smmu->options &= ~arm_smmu_options[i].opt;
else
smmu->options |= arm_smmu_options[i].opt;
dev_notice(smmu->dev, "option %s\n",
arm_smmu_options[i].prop);
}
} while (arm_smmu_options[++i].opt);
/* FIXME: remove if linsim is fixed */
if (tegra_platform_is_sim()) {
u64 nvcl;
if (!of_property_read_u64(smmu->dev->of_node,
"nvidia,changelist", &nvcl)) {
if (nvcl < 38424879)
smmu->options |= ARM_SMMU_OPT_SECURE_CFG_ACCESS;
}
}
}
static struct device_node *dev_get_dev_node(struct device *dev)
{
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return bus->bridge->parent->of_node;
}
return dev->of_node;
}
static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
struct device_node *dev_node)
{
struct rb_node *node = smmu->masters.rb_node;
while (node) {
struct arm_smmu_master *master;
master = container_of(node, struct arm_smmu_master, node);
if (dev_node < master->of_node)
node = node->rb_left;
else if (dev_node > master->of_node)
node = node->rb_right;
else
return master;
}
return NULL;
}
static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device *dev)
{
struct arm_smmu_master_cfg *cfg = NULL;
struct iommu_group *group = iommu_group_get(dev);
if (group) {
cfg = iommu_group_get_iommudata(group);
iommu_group_put(group);
}
return cfg;
}
static int insert_smmu_master(struct arm_smmu_device *smmu,
struct arm_smmu_master *master)
{
struct rb_node **new, *parent;
new = &smmu->masters.rb_node;
parent = NULL;
while (*new) {
struct arm_smmu_master *this
= container_of(*new, struct arm_smmu_master, node);
parent = *new;
if (master->of_node < this->of_node)
new = &((*new)->rb_left);
else if (master->of_node > this->of_node)
new = &((*new)->rb_right);
else
return -EEXIST;
}
rb_link_node(&master->node, parent, new);
rb_insert_color(&master->node, &smmu->masters);
return 0;
}
/*
* Look for a master_cfg which is identical to the masterspec passed. This
* allows us to support multiple devices all sharing the same master_cfg.
* Ultimately that allows multiple devices to share the same set of stream
* IDs.
*/
static struct arm_smmu_master_cfg *
find_identical_smmu_master_cfg(struct arm_smmu_device *smmu,
struct of_phandle_args *masterspec)
{
struct rb_node *node;
struct arm_smmu_master *master;
int i;
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
int sids_match = 1;
master = container_of(node, struct arm_smmu_master, node);
/* If we don't have the same number of StreamIDs then we are
* certainly not identical.
*/
if (master->cfg->num_streamids != masterspec->args_count)
continue;
/* And now check the StreamIDs themselves. */
for (i = 0; i < masterspec->args_count; i++) {
if (masterspec->args[i] != master->cfg->streamids[i]) {
sids_match = 0;
break;
}
}
if (!sids_match)
continue;
/* Found an identical master cfg! */
return master->cfg;
}
return NULL;
}
static int register_smmu_master(struct arm_smmu_device *smmu,
struct device *dev,
struct of_phandle_args *masterspec)
{
int i;
struct arm_smmu_master *master;
struct arm_smmu_master_cfg *master_cfg;
master = find_smmu_master(smmu, masterspec->np);
if (master) {
/* Silently ignore if the master is attempted to
* register with same propoerties as before.
*/
if (master->cfg->num_streamids == masterspec->args_count) {
for (i = 0; i < master->cfg->num_streamids; ++i) {
if (master->cfg->streamids[i] == masterspec->args[i])
continue;
break;
}
if (i == master->cfg->num_streamids)
return 0;
}
dev_err(dev,
"rejecting multiple registrations for master device %s\n",
masterspec->np->name);
return -EBUSY;
}
if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
dev_err(dev,
"reached maximum number (%d) of stream IDs for master device %s\n",
MAX_MASTER_STREAMIDS, masterspec->np->name);
return -ENOSPC;
}
master = devm_kzalloc(smmu->dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->of_node = masterspec->np;
master_cfg = find_identical_smmu_master_cfg(smmu, masterspec);
if (master_cfg) {
master->cfg = master_cfg;
return insert_smmu_master(smmu, master);
}
/* Make a new master_cfg */
master_cfg = devm_kzalloc(smmu->dev, sizeof(*master_cfg), GFP_KERNEL);
if (!master_cfg) {
kfree(master);
return -ENOMEM;
}
master->cfg = master_cfg;
master->cfg->num_streamids = masterspec->args_count;
for (i = 0; i < master->cfg->num_streamids; ++i) {
u16 streamid = masterspec->args[i];
if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
(streamid >= smmu->num_mapping_groups)) {
dev_err(dev,
"stream ID for master device %s greater than maximum allowed (%d)\n",
masterspec->np->name, smmu->num_mapping_groups);
return -ERANGE;
}
master->cfg->streamids[i] = streamid;
}
return insert_smmu_master(smmu, master);
}
static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master *master = NULL;
struct device_node *dev_node = dev_get_dev_node(dev);
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(smmu, &arm_smmu_devices, list) {
master = find_smmu_master(smmu, dev_node);
if (master)
break;
}
spin_unlock(&arm_smmu_devices_lock);
return master ? smmu : NULL;
}
static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
int idx;
do {
idx = find_next_zero_bit(map, end, start);
if (idx == end)
return -ENOSPC;
} while (test_and_set_bit(idx, map));
return idx;
}
static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
clear_bit(idx, map);
}
/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync_wait_for_complete(struct arm_smmu_device *smmu,
void __iomem *gr0_base)
{
int count = 0;
while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
& sTLBGSTATUS_GSACTIVE) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(smmu->dev,
"TLB sync timed out -- SMMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void arm_smmu_cb_tlb_sync_wait_for_complete(struct arm_smmu_device *smmu,
void __iomem *base)
{
int count = 0;
while (readl_relaxed(base + ARM_SMMU_CB_TLBSTATUS)
& sTLBGSTATUS_GSACTIVE) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(smmu->dev,
"TLB sync timed out -- SMMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void arm_smmu_cb_tlb_sync(struct arm_smmu_domain *smmu_domain, bool iso_client)
{
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *base;
uint64_t offset;
int smmu_id = 0;
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed_iso(0, base + ARM_SMMU_CB_TLBSYNC, iso_client);
offset = abs(base - smmu_handle->base[0]);
if (iso_client) {
if (smmu_handle->iso_smmu_id < 0)
return;
base = smmu->base[smmu->iso_smmu_id] + offset;
arm_smmu_cb_tlb_sync_wait_for_complete(smmu, base);
return;
}
while (smmu_id < smmu->num_smmus) {
if (smmu_id != smmu->iso_smmu_id) {
base = smmu->base[smmu_id] + offset;
arm_smmu_cb_tlb_sync_wait_for_complete(smmu, base);
}
smmu_id++;
}
}
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu, bool iso_client)
{
int smmu_id = 0;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
u32 gr0_offset = abs(gr0_base - smmu->base[0]);
if (tegra_platform_is_sim() || arm_smmu_gr0_tlbiallnsnh)
writel_relaxed_iso(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH,
iso_client);
writel_relaxed_iso(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC, iso_client);
if (iso_client) {
if (smmu_handle->iso_smmu_id < 0)
return;
gr0_base = smmu->base[smmu->iso_smmu_id] + gr0_offset;
arm_smmu_tlb_sync_wait_for_complete(smmu, gr0_base);
return;
}
while (smmu_id < smmu->num_smmus) {
if (smmu_id != smmu->iso_smmu_id) {
gr0_base = smmu->base[smmu_id] + gr0_offset;
arm_smmu_tlb_sync_wait_for_complete(smmu, gr0_base);
}
smmu_id++;
}
}
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
{
u64 time_before = 0;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *base;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
bool do_cb_inval_sync = false;
#ifdef CONFIG_TRACEPOINTS
if (static_key_false(&__tracepoint_arm_smmu_tlb_inv_context.key)
&& test_bit(cfg->cbndx, smmu->context_filter))
time_before = local_clock();
#endif
if (stage1) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed_cfg_iso(ARM_SMMU_CB_ASID(cfg),
base + ARM_SMMU_CB_S1_TLBIASID,
cfg);
if (!tegra_platform_is_sim())
do_cb_inval_sync = true;
} else {
base = ARM_SMMU_GR0(smmu);
writel_relaxed_cfg_iso(ARM_SMMU_CB_VMID(cfg),
base + ARM_SMMU_GR0_TLBIVMID,
cfg);
}
if (do_cb_inval_sync) {
if (cfg->iso_client_count)
arm_smmu_cb_tlb_sync(smmu_domain, 1);
if (cfg->non_iso_client_count)
arm_smmu_cb_tlb_sync(smmu_domain, 0);
} else {
if (cfg->iso_client_count)
arm_smmu_tlb_sync(smmu, 1);
if (cfg->non_iso_client_count)
arm_smmu_tlb_sync(smmu, 0);
}
if (time_before)
trace_arm_smmu_tlb_inv_context(time_before, cfg->cbndx);
}
static void __arm_smmu_tlb_inv_range(struct arm_smmu_domain *smmu_domain,
unsigned long iova)
{
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *reg;
if (stage1) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += ARM_SMMU_CB_S1_TLBIVA;
iova >>= 12;
iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
writeq_relaxed_cfg_iso(iova, reg, cfg);
} else if (smmu->version == ARM_SMMU_V2) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += ARM_SMMU_CB_S2_TLBIIPAS2;
writeq_relaxed_cfg_iso(iova >> 12, reg, cfg);
} else {
reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
writel_relaxed_cfg_iso(ARM_SMMU_CB_VMID(cfg), reg,
cfg);
}
}
static void arm_smmu_tlb_inv_range(struct arm_smmu_domain *smmu_domain,
unsigned long iova, size_t size)
{
int i;
u64 time_before = 0;
unsigned long iova_orig = iova;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
#ifdef CONFIG_TRACEPOINTS
if (static_key_false(&__tracepoint_arm_smmu_tlb_inv_range.key)
&& test_bit(cfg->cbndx, smmu->context_filter))
time_before = local_clock();
#endif
for (i = 0; i < size / PAGE_SIZE; i++) {
__arm_smmu_tlb_inv_range(smmu_domain, iova);
iova += PAGE_SIZE;
}
if (!tegra_platform_is_sim() &&
(stage1 || smmu->version == ARM_SMMU_V2)) {
if (cfg->iso_client_count)
arm_smmu_cb_tlb_sync(smmu_domain, 1);
if (cfg->non_iso_client_count)
arm_smmu_cb_tlb_sync(smmu_domain, 0);
} else {
if (cfg->iso_client_count)
arm_smmu_tlb_sync(smmu, 1);
if (cfg->non_iso_client_count)
arm_smmu_tlb_sync(smmu, 0);
}
if (time_before)
trace_arm_smmu_tlb_inv_range(time_before, cfg->cbndx,
iova_orig, size);
}
static irqreturn_t __arm_smmu_context_fault(int irq, void *dev,
void __iomem *cb_base, void __iomem *gr1_base,
int smmu_id)
{
int flags, ret, sid;
u32 fsr, far, fsynr, fsynra, resume;
unsigned long iova;
struct iommu_domain *domain = dev;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
cb_base = cb_base + ARM_SMMU_CB(smmu, cfg->cbndx);
fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
if (!(fsr & FSR_FAULT))
return IRQ_NONE;
if (fsr & FSR_IGN)
dev_err_ratelimited(smmu->dev,
"Unexpected context fault (fsr 0x%x) smmu%d\n",
fsr, smmu_id);
fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
fsynra = readl_relaxed(gr1_base + ARM_SMMU_GR1_FRSYNRA(cfg->cbndx));
flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
iova = far;
#ifdef CONFIG_64BIT
far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
iova |= ((unsigned long)far << 32);
#endif
sid = (fsynra & FRSYNRA_STREAMID_MASK) >> FRSYNRA_STREAMID_SHIFT;
sid &= 0x7f; /* Tegra hack. Why are the top 9-bits not RAZ? */
if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
ret = IRQ_HANDLED;
resume = RESUME_RETRY;
} else {
pgdval_t pgd;
pudval_t pud;
pmdval_t pmd;
pteval_t pte;
get_pte_info(cfg, iova, &pgd, &pud, &pmd, &pte);
dev_err_ratelimited(smmu->dev,
"Unhandled context fault: smmu%d, iova=0x%08lx, fsynr=0x%x, "
"cb=%d, sid=%d(0x%x - %s), pgd=%llx, pud=%llx, "
"pmd=%llx, pte=%llx\n", smmu_id, iova, fsynr, cfg->cbndx,
sid, sid, tegra_mc_get_sid_name(sid), pgd,
pud, pmd, pte);
ret = IRQ_NONE;
resume = RESUME_TERMINATE;
}
/* Clear the faulting FSR */
writel_single(fsr, cb_base + ARM_SMMU_CB_FSR);
/* Retry or terminate any stalled transactions */
if (fsr & FSR_SS)
writel_relaxed_single(resume, cb_base + ARM_SMMU_CB_RESUME);
return ret;
}
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
int i;
struct arm_smmu_device *smmu = dev;
bool fault_handled = false;
for (i = 0; i < smmu->num_context_banks; i++) {
void __iomem *cb_base, *gr1;
struct iommu_domain *domain;
u32 fsr, fsr_offset, cb_offset, gr1_offset;
int smmu_id = 0;
cb_base = ARM_SMMU_CB_BASE(smmu);
cb_offset = abs(cb_base - smmu->base[0]);
fsr_offset = ARM_SMMU_CB(smmu, i) + ARM_SMMU_CB_FSR;
gr1_offset = abs(ARM_SMMU_GR1(smmu) - smmu->base[0]);
while (smmu_id < smmu->num_smmus) {
cb_base = smmu->base[smmu_id] + cb_offset;
gr1 = smmu->base[smmu_id] + gr1_offset;
fsr = readl_relaxed(cb_base + fsr_offset);
if (fsr & FSR_FAULT) {
domain = iommu_domains[i];
if (!domain) {
pr_err("%s: smmu%d domain(%d) doesn't exist\n",
__func__, smmu_id, i);
continue;
}
__arm_smmu_context_fault(irq, domain,
cb_base, gr1, smmu_id);
fault_handled = true;
}
smmu_id++;
}
}
if (fault_handled)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static void arm_smmu_global_fault_printinfo(struct arm_smmu_device *smmu,
void __iomem *gr0_base, int smmu_id)
{
int sid;
u64 gfar;
u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
gfar = readq_relaxed(gr0_base + ARM_SMMU_GR0_sGFAR);
sid = gfsynr1 & 0xFF;
dev_err_ratelimited(smmu->dev,
"SMMU%d: Unexpected {global,context} fault, this could be serious\n", smmu_id);
dev_err_ratelimited(smmu->dev,
"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x, "
"fault_addr=0x%llx, sid=%d(0x%x - %s)\n",
gfsr, gfsynr0, gfsynr1, gfsynr2, gfar, sid, sid, tegra_mc_get_sid_name(sid));
writel_single(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
}
static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
u32 gfsr, gr0_offset, cb_offset;
struct arm_smmu_device *smmu = dev;
void __iomem *cb_base = ARM_SMMU_CB_BASE(smmu);
void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
int smmu_id = 0;
bool fault_handled = false;
cb_offset = abs(cb_base - smmu->base[0]);
gr0_offset = abs(gr0_base - smmu->base[0]);
while (smmu_id < smmu->num_smmus) {
gr0_base = smmu->base[smmu_id] + gr0_offset;
cb_base = smmu->base[smmu_id] + cb_offset;
gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
if (gfsr) {
arm_smmu_global_fault_printinfo(smmu, gr0_base, smmu_id);
fault_handled = true;
} else {
int ret;
ret = arm_smmu_context_fault(irq, dev);
if (ret == IRQ_HANDLED)
fault_handled = true;
}
smmu_id++;
}
if (fault_handled) {
return IRQ_HANDLED;
} else {
pr_err("No fault found! But SMMU fault irq occured.");
return IRQ_NONE;
}
}
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
size_t size)
{
unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
/* Ensure new page tables are visible to the hardware walker */
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
dsb(ishst);
} else {
/*
* If the SMMU can't walk tables in the CPU caches, treat them
* like non-coherent DMA since we need to flush the new entries
* all the way out to memory. There's no possibility of
* recursion here as the SMMU table walker will not be wired
* through another SMMU.
*/
dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
DMA_TO_DEVICE);
}
}
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
u32 reg;
bool stage1;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *cb_base, *gr0_base, *gr1_base;
gr0_base = ARM_SMMU_GR0(smmu);
gr1_base = ARM_SMMU_GR1(smmu);
stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
/* CBAR */
reg = cfg->cbar;
if (smmu->version == ARM_SMMU_V1)
reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
/*
* Use the weakest shareability/memory types, so they are
* overridden by the ttbcr/pte.
*/
if (stage1) {
reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
} else {
reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
}
writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
if (smmu->version > ARM_SMMU_V1) {
/* CBA2R */
#ifdef CONFIG_64BIT
reg = CBA2R_RW64_64BIT;
#else
reg = CBA2R_RW64_32BIT;
#endif
writel_relaxed(reg,
gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
/* TTBCR2 */
switch (smmu->s1_input_size) {
case 32:
reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
break;
case 36:
reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
break;
case 39:
case 40:
reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
break;
case 42:
reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
break;
case 44:
reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
break;
case 48:
reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
break;
}
switch (smmu->s1_output_size) {
case 32:
reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
break;
case 36:
reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
break;
case 39:
case 40:
reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
break;
case 42:
reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
break;
case 44:
reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
break;
case 48:
reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
break;
}
if (stage1)
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
}
/* TTBR0 */
arm_smmu_flush_pgtable(smmu, cfg->pgd,
PTRS_PER_PGD * sizeof(pgd_t));
reg = __pa(cfg->pgd);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
if (stage1)
reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
/*
* TTBCR
* We use long descriptor, with inner-shareable WBWA tables in TTBR0.
*/
if (smmu->version > ARM_SMMU_V1) {
if (PAGE_SIZE == SZ_4K)
reg = TTBCR_TG0_4K;
else
reg = TTBCR_TG0_64K;
if (!stage1) {
reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
switch (smmu->s2_output_size) {
case 32:
reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
break;
case 36:
reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
break;
case 40:
reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
break;
case 42:
reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
break;
case 44:
reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
break;
case 48:
reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
break;
}
} else {
reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
}
} else {
reg = 0;
}
reg |= TTBCR_EAE |
(TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
(TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
(TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
if (!stage1)
reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
/* MAIR0 (stage-1 only) */
if (stage1) {
reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
(MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
(MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
}
/* SCTLR */
reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP | SCTLR_HUPCF;
if (stage1)
reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
reg |= SCTLR_E;
#endif
writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
}
static int arm_smmu_init_domain_context(struct iommu_domain *domain,
struct arm_smmu_device *smmu)
{
int irq, start, ret = 0;
unsigned long flags;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
spin_lock_irqsave(&smmu_domain->lock, flags);
if (smmu_domain->smmu)
goto out_unlock;
if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
/*
* We will likely want to change this if/when KVM gets
* involved.
*/
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks;
} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks;
} else {
cfg->cbar = CBAR_TYPE_S2_TRANS;
start = 0;
}
ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
smmu->num_context_banks);
if (ret < 0)
goto out_unlock;
cfg->cbndx = ret;
if (smmu->version == ARM_SMMU_V1) {
cfg->irptndx = atomic_inc_return(&smmu->irptndx);
cfg->irptndx %= smmu->num_context_irqs;
} else if (smmu->num_context_banks == smmu->num_context_irqs) {
cfg->irptndx = cfg->cbndx;
} else {
cfg->irptndx = 0;
}
cfg->iso_client_count = 0;
cfg->non_iso_client_count = 0;
ACCESS_ONCE(smmu_domain->smmu) = smmu;
arm_smmu_init_context_bank(smmu_domain);
spin_unlock_irqrestore(&smmu_domain->lock, flags);
if (smmu->num_context_irqs) {
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
"arm-smmu-context-fault", domain);
if (ret < 0) {
dev_err(smmu->dev,
"failed to request context IRQ %d (%u)\n",
cfg->irptndx, irq);
cfg->irptndx = INVALID_IRPTNDX;
}
}
BUG_ON(iommu_domains[cfg->cbndx]);
iommu_domains[cfg->cbndx] = domain;
return 0;
out_unlock:
spin_unlock_irqrestore(&smmu_domain->lock, flags);
return ret;
}
static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
void __iomem *cb_base;
int irq;
if (!smmu)
return;
/* Disable the context bank and nuke the TLB before freeing it. */
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_tlb_inv_context(smmu_domain);
if ((smmu->num_context_irqs) &&
(cfg->irptndx != INVALID_IRPTNDX)) {
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
free_irq(irq, domain);
}
__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
iommu_domains[cfg->cbndx] = NULL;
}
static int arm_smmu_get_hwid(struct iommu_domain *domain,
struct device *dev, unsigned int id)
{
struct arm_smmu_master_cfg *cfg;
cfg = find_smmu_master_cfg(dev);
if (!cfg)
return -EINVAL;
if (id >= cfg->num_streamids)
return -EINVAL;
return cfg->streamids[id];
}
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
struct arm_smmu_domain *smmu_domain;
pgd_t *pgd;
unsigned int order;
/*
* Allocate the domain and initialise some of its data structures.
* We can't really do anything meaningful until we've added a
* master.
*/
smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
if (!smmu_domain)
return NULL;
order = get_order(PTRS_PER_PGD * sizeof(pgd_t));
pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!pgd)
goto out_free_domain;
smmu_domain->cfg.pgd = pgd;
spin_lock_init(&smmu_domain->lock);
/*
* Our arm-smmu driver can handle any size page by breaking
* it up into 4Kb and 4Mb chunks. We would like the iommu
* framework to pass us largest pages possible for performance
* reasons, so set all pgsize_bitmap bits.
*/
smmu_domain->domain.pgsize_bitmap = ALL_PGSIZES_BITMAP;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
if (iommu_get_dma_cookie(&smmu_domain->domain))
goto out_free_domain;
#endif
return &smmu_domain->domain;
out_free_domain:
kfree(smmu_domain);
return NULL;
}
static void arm_smmu_free_ptes(pmd_t *pmd)
{
pgtable_t table = pmd_pgtable(*pmd);
__free_page(table);
}
static void arm_smmu_free_pmds(pud_t *pud)
{
int i;
pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
pmd = pmd_base;
for (i = 0; i < PTRS_PER_PMD; ++i) {
if (pmd_none(*pmd))
continue;
arm_smmu_free_ptes(pmd);
pmd++;
}
pmd_free(NULL, pmd_base);
}
static void arm_smmu_free_puds(pgd_t *pgd)
{
int i;
pud_t *pud, *pud_base = pud_offset(pgd, 0);
pud = pud_base;
for (i = 0; i < PTRS_PER_PUD; ++i) {
if (pud_none(*pud))
continue;
arm_smmu_free_pmds(pud);
pud++;
}
pud_free(NULL, pud_base);
}
static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
int i;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd, *pgd_base = cfg->pgd;
unsigned long order;
/*
* Recursively free the page tables for this domain. We don't
* care about speculative TLB filling because the tables should
* not be active in any context bank at this point (SCTLR.M is 0).
*/
pgd = pgd_base;
for (i = 0; i < PTRS_PER_PGD; ++i) {
if (pgd_none(*pgd))
continue;
arm_smmu_free_puds(pgd);
pgd++;
}
order = get_order(PTRS_PER_PGD * sizeof(pgd_t));
free_pages((unsigned long)pgd_base, order);
}
static void arm_smmu_domain_free(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
/*
* Free the domain resources. We assume that all devices have
* already been detached.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
iommu_put_dma_cookie(domain);
#endif
arm_smmu_destroy_domain_context(domain);
arm_smmu_free_pgtables(smmu_domain);
kfree(smmu_domain);
}
static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_smr *smrs;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
return 0;
if (cfg->smrs) {
pr_debug("%s() cfg->smrs=%p exists\n", __func__, cfg->smrs);
return -EEXIST;
}
smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
if (!smrs)
return -ENOMEM;
/* Allocate the SMRs on the SMMU */
for (i = 0; i < cfg->num_streamids; ++i) {
int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
smmu->num_mapping_groups);
if (idx < 0) {
dev_err(smmu->dev, "failed to allocate free SMR\n");
goto err_free_smrs;
}
smrs[i] = (struct arm_smmu_smr) {
.idx = idx,
.mask = SMR_ID_MASK,
.id = cfg->streamids[i],
};
}
/* It worked! Now, poke the actual hardware */
for (i = 0; i < cfg->num_streamids; ++i) {
u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
smrs[i].mask << SMR_MASK_SHIFT;
writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
}
cfg->smrs = smrs;
pr_debug("%s() set cfg->smrs=%p\n", __func__, cfg->smrs);
return 0;
err_free_smrs:
while (--i >= 0)
__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
kfree(smrs);
return -ENOSPC;
}
static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
struct arm_smmu_master_cfg *cfg)
{
int i;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
struct arm_smmu_smr *smrs = cfg->smrs;
if (!smrs)
return;
/* Invalidate the SMRs before freeing back to the allocator */
for (i = 0; i < cfg->num_streamids; ++i) {
u8 idx = smrs[i].idx;
writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
__arm_smmu_free_bitmap(smmu->smr_map, idx);
}
cfg->smrs = NULL;
kfree(smrs);
}
static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i, ret;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* Devices in an IOMMU group may already be configured */
ret = arm_smmu_master_configure_smrs(smmu, cfg);
if (ret)
return ret == -EEXIST ? 0 : ret;
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx, s2cr;
idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
s2cr = S2CR_TYPE_TRANS |
(smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
return 0;
}
static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg)
{
int i;
struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
/* An IOMMU group is torn down by the first device to be removed */
if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
return;
/*
* We *must* clear the S2CR first, because freeing the SMR means
* that it can be re-allocated immediately.
*/
for (i = 0; i < cfg->num_streamids; ++i) {
u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(idx));
}
arm_smmu_master_free_smrs(smmu, cfg);
}
static int smmu_ptdump_show(struct seq_file *s, void *unused)
{
struct arm_smmu_domain *smmu_domain = s->private;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int i, j, k, l;
unsigned long addr = 0;
unsigned long mapped = 0;
pgd = cfg->pgd;
for (i = 0; i < PTRS_PER_PGD;
++i, pgd++) {
if (pgd_none(*pgd)) {
addr += PGDIR_SIZE;
continue;
}
pud = pud_offset(pgd, addr);
for (j = 0; j < PTRS_PER_PUD; ++j, pud++) {
if (pud_none(*pud)) {
addr += PUD_SIZE;
continue;
}
pmd = pmd_offset(pud, addr);
for (k = 0; k < PTRS_PER_PMD;
++k, pmd++) {
if (pmd_none(*pmd)) {
addr += PMD_SIZE;
continue;
}
pte = pmd_page_vaddr(*pmd) + pte_index(addr);
for (l = 0; l < PTRS_PER_PTE;
++l, pte++, addr += PAGE_SIZE) {
phys_addr_t pa;
pa = __pfn_to_phys(pte_pfn(*pte));
if (!pa)
continue;
seq_printf(s,
"va=0x%016lx pa=%pap *pte=%pad\n",
addr, &pa, &(*pte));
mapped += PAGE_SIZE;
}
}
}
}
seq_printf(s, "total mapped iova=%luKB\n", mapped / SZ_1K);
return 0;
}
static int smmu_ptdump_open(struct inode *inode, struct file *file)
{
return single_open(file, smmu_ptdump_show, inode->i_private);
}
static const struct file_operations smmu_ptdump_fops = {
.open = smmu_ptdump_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define defreg_cb(_name) \
{ \
.name = __stringify(_name), \
.offset = ARM_SMMU_CB_ ## _name,\
}
static const struct debugfs_reg32 arm_smmu_cb_regs[] = {
defreg_cb(SCTLR),
defreg_cb(TTBCR2),
defreg_cb(TTBR0_LO),
defreg_cb(TTBR0_HI),
defreg_cb(TTBCR),
defreg_cb(S1_MAIR0),
defreg_cb(FSR),
defreg_cb(FAR_LO),
defreg_cb(FAR_HI),
defreg_cb(FSYNR0),
};
static ssize_t smmu_debugfs_iova2phys_write(struct file *file,
const char __user *buffer,
size_t count, loff_t *pos)
{
int ret;
struct iommu_domain *domain = file_inode(file)->i_private;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
char str[] = "0x0123456789abcdef";
unsigned long flags;
dma_addr_t tmp;
count = min_t(size_t, strlen(str), count);
if (copy_from_user(str, buffer, count))
return -EINVAL;
ret = sscanf(str, "0x%16llx", &tmp);
if (ret != 1)
return -EINVAL;
spin_lock_irqsave(&smmu_domain->lock, flags);
smmu_domain->inquired_iova = tmp;
smmu_domain->inquired_phys =
arm_smmu_iova_to_phys(domain, smmu_domain->inquired_iova);
pr_info("iova=%pa pa=%pa\n",
&smmu_domain->inquired_iova, &smmu_domain->inquired_phys);
spin_unlock_irqrestore(&smmu_domain->lock, flags);
return count;
}
static int smmu_iova2phys_show(struct seq_file *m, void *v)
{
struct iommu_domain *domain = m->private;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
unsigned long flags;
spin_lock_irqsave(&smmu_domain->lock, flags);
seq_printf(m, "iova=%pa pa=%pa\n",
&smmu_domain->inquired_iova,
&smmu_domain->inquired_phys);
spin_unlock_irqrestore(&smmu_domain->lock, flags);
return 0;
}
static int smmu_iova2phys_open(struct inode *inode, struct file *file)
{
return single_open(file, smmu_iova2phys_show, inode->i_private);
}
static const struct file_operations smmu_iova2phys_fops = {
.open = smmu_iova2phys_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = smmu_debugfs_iova2phys_write,
};
static void debugfs_create_smmu_cb(struct iommu_domain *domain,
struct device *dev)
{
struct dentry *dent;
char name[] = "cb000";
struct debugfs_regset32 *cb;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
u8 cbndx = smmu_domain->cfg.cbndx;
struct arm_smmu_device *smmu = smmu_domain->smmu;
sprintf(name, "cb%03d", cbndx);
dent = debugfs_create_dir(name, smmu->debugfs_root);
if (!dent)
return;
cb = smmu->regset + 1 + cbndx;
cb->regs = arm_smmu_cb_regs;
cb->nregs = ARRAY_SIZE(arm_smmu_cb_regs);
cb->base = smmu->base[0] + (smmu->size >> 1) +
cbndx * (1 << smmu->pgshift);
debugfs_create_regset32("regdump", S_IRUGO, dent, cb);
debugfs_create_file("ptdump", S_IRUGO, dent, smmu_domain,
&smmu_ptdump_fops);
debugfs_create_file("iova_to_phys", S_IRUSR, dent, domain,
&smmu_iova2phys_fops);
}
static int smmu_master_show(struct seq_file *s, void *unused)
{
int i;
struct arm_smmu_master *master = s->private;
for (i = 0; i < master->cfg->num_streamids; i++)
seq_printf(s, "streamids: % 3d ", master->cfg->streamids[i]);
seq_printf(s, "\n");
for (i = 0; i < master->cfg->num_streamids; i++)
seq_printf(s, "smrs: % 3d ", master->cfg->smrs[i].idx);
seq_printf(s, "\n");
return 0;
}
static int smmu_master_open(struct inode *inode, struct file *file)
{
return single_open(file, smmu_master_show, inode->i_private);
}
static const struct file_operations smmu_master_fops = {
.open = smmu_master_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void add_smmu_master_debugfs(struct iommu_domain *domain,
struct device *dev,
struct arm_smmu_master *master)
{
struct dentry *dent;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
char name[] = "cb000";
char target[] = "../../cb000";
u8 cbndx = smmu_domain->cfg.cbndx;
dent = debugfs_create_dir(dev_name(dev), smmu->masters_root);
if (!dent)
return;
debugfs_create_file("streamids", 0444, dent, master, &smmu_master_fops);
debugfs_create_u8("cbndx", 0444, dent, &smmu_domain->cfg.cbndx);
debugfs_create_smmu_cb(domain, dev);
sprintf(name, "cb%03d", cbndx);
sprintf(target, "../../cb%03d", cbndx);
debugfs_create_symlink(name, dent, target);
master->debugfs_root = dent;
}
static void arm_smmu_do_linear_map(struct device *dev)
{
struct iommu_linear_map *map = NULL;
if (iommu_get_linear_map(dev, &map)) {
int err;
DEFINE_DMA_ATTRS(attrs);
if (map->is_mapped)
return;
dma_set_attr(DMA_ATTR_SKIP_IOVA_GAP, __DMA_ATTR(attrs));
dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, __DMA_ATTR(attrs));
while (map && map->size) {
size_t size = PAGE_ALIGN(map->size);
err = dma_map_linear_attrs(dev, map->start,
size, 0, __DMA_ATTR(attrs));
if (err == DMA_ERROR_CODE) {
dev_err(dev,
"IOVA linear map %pad(%zx) failed\n",
&map->start, size);
} else {
dev_info(dev,
"IOVA linear map %pad(%zx)\n",
&map->start, size);
map->is_mapped = true;
}
map++;
}
}
}
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
int ret, i;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *arm_smmu_cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu, *dom_smmu;
struct arm_smmu_master_cfg *cfg;
struct device_node *dev_node;
bool iso_smmu_client = false;
smmu = find_smmu_for_device(dev);
if (!smmu) {
dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
return -ENXIO;
}
if (dev->archdata.iommu) {
dev_err(dev, "already attached to IOMMU domain\n");
return -EEXIST;
}
dev_node = dev_get_dev_node(dev);
if (of_property_read_bool(dev_node, "iso-smmu")) {
if (smmu->iso_smmu_id == -1) {
dev_err(dev,
"iso smmu not present so can't enable it for %s\n",
dev_name(dev));
BUG();
return -EINVAL;
}
iso_smmu_client = true;
}
/*
* Sanity check the domain. We don't support domains across
* different SMMUs.
*/
dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
if (!dom_smmu) {
/* Now that we have a master, we can finalise the domain */
ret = arm_smmu_init_domain_context(domain, smmu);
if (ret < 0)
return ret;
dom_smmu = smmu_domain->smmu;
}
if (dom_smmu != smmu) {
dev_err(dev,
"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
return -EINVAL;
}
/* Looks ok, so add the device to the domain */
cfg = find_smmu_master_cfg(dev);
if (!cfg)
return -ENODEV;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
if (iommu_dma_init_domain(domain,
domain->geometry.aperture_start,
domain->geometry.aperture_end -
domain->geometry.aperture_start, dev))
pr_err("iommu_dma_init_domain failed, %s\n",
dev_name(dev));
#endif
arm_smmu_do_linear_map(dev);
ret = arm_smmu_domain_add_master(smmu_domain, cfg);
if (!ret) {
dev->archdata.iommu = domain;
add_smmu_master_debugfs(domain, dev,
find_smmu_master(smmu, dev_get_dev_node(dev)));
}
/* Enable stream Id override, which enables SMMU translation for dev */
for (i = 0; i < cfg->num_streamids; i++)
platform_override_streamid(cfg->streamids[i]);
if (iso_smmu_client) {
pr_info("Adding %s to ISO SMMU client\n", dev_name(dev));
arm_smmu_cfg->iso_client_count++;
} else {
arm_smmu_cfg->non_iso_client_count++;
}
if (arm_smmu_cfg->iso_client_count &&
arm_smmu_cfg->non_iso_client_count)
pr_warn("%s: Shared context between ISO and non-ISO clients\n",
dev_name(dev));
return ret;
}
static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_master_cfg *cfg;
cfg = find_smmu_master_cfg(dev);
if (!cfg)
return;
dev->archdata.iommu = NULL;
arm_smmu_domain_remove_master(smmu_domain, cfg);
}
static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
unsigned long end, unsigned long phys)
{
return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
(addr + ARM_SMMU_PTE_CONT_SIZE <= end) &&
!(phys & ~ARM_SMMU_PTE_CONT_MASK);
}
static void *arm_smmu_alloc_pgtable_page(struct arm_smmu_domain *domain, int lvl,
void * entry, unsigned long addr)
{
struct arm_smmu_device *smmu = domain->smmu;
void * ret = NULL;
pr_debug("Alloc for address %lx level: %d\n", addr, lvl);
if (lvl == 0) {
#ifndef __PAGETABLE_PUD_FOLDED
pgd_t *pgd = (pgd_t *) entry;
pud_t *pud;
if (!pgd_none(*pgd)) {
ret = pud_offset(pgd, adr);
goto unlock_ret;
}
pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
if (!pud)
goto unlock_ret;
arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
pgd_populate(NULL, pgd, pud);
arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
ret = pud + pud_index(addr);
goto unlock_ret;
#else
goto unlock_ret;
#endif
} else if (lvl == 1) {
#ifndef __PAGETABLE_PMD_FOLDED
pud_t *pud = (pud_t *) entry;
pmd_t *pmd;
if (!pud_none(*pud)) {
ret = pmd_offset(pud, addr);
goto unlock_ret;
}
pmd = (pmd_t *) get_zeroed_page(GFP_ATOMIC);
if (!pmd)
goto unlock_ret;
arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
pud_populate(NULL, pud, pmd);
arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
ret = pmd + pmd_index(addr);
goto unlock_ret;
#else
goto unlock_ret;
#endif
} else if (lvl == 2) {
pmd_t *pmd = (pmd_t *) entry;
pgtable_t table;
if (!pmd_none(*pmd)) {
ret = pmd_page_vaddr(*pmd) + pte_index(addr);
goto unlock_ret;
}
table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
if (!table)
goto unlock_ret;
arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
pmd_populate(NULL, pmd, table);
arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
ret = table;
goto unlock_ret;
}
unlock_ret:
return ret;
}
static int arm_smmu_alloc_init_pte(struct arm_smmu_domain *domain, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned long pfn, int prot, int stage)
{
pte_t *pte, *start;
struct arm_smmu_device *smmu = domain->smmu;
pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
if (pmd_none(*pmd)) {
/* Allocate a new set of tables */
pgtable_t table = (pgtable_t) arm_smmu_alloc_pgtable_page(
domain, 2, pmd, addr);
if (!table)
return -ENOMEM;
}
if (stage == 1) {
pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
pteval |= ARM_SMMU_PTE_AP_RDONLY;
if (prot & IOMMU_CACHE)
pteval |= (MAIR_ATTR_IDX_CACHE <<
ARM_SMMU_PTE_ATTRINDX_SHIFT);
} else {
pteval |= ARM_SMMU_PTE_HAP_FAULT;
if (prot & IOMMU_READ)
pteval |= ARM_SMMU_PTE_HAP_READ;
if (prot & IOMMU_WRITE)
pteval |= ARM_SMMU_PTE_HAP_WRITE;
if (prot & IOMMU_CACHE)
pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
else
pteval |= ARM_SMMU_PTE_MEMATTR_NC;
}
if (prot & IOMMU_NOEXEC)
pteval |= ARM_SMMU_PTE_XN;
/* If no access, create a faulting entry to avoid TLB fills */
if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
pteval &= ~ARM_SMMU_PTE_PAGE;
pteval |= ARM_SMMU_PTE_SH_IS;
start = pmd_page_vaddr(*pmd) + pte_index(addr);
pte = start;
/*
* Install the page table entries. This is fairly complicated
* since we attempt to make use of the contiguous hint in the
* ptes where possible. The contiguous hint indicates a series
* of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
* contiguous region with the following constraints:
*
* - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
* - Each pte in the region has the contiguous hint bit set
*
* This complicates unmapping (also handled by this code, when
* neither IOMMU_READ or IOMMU_WRITE are set) because it is
* possible, yet highly unlikely, that a client may unmap only
* part of a contiguous range. This requires clearing of the
* contiguous hint bits in the range before installing the new
* faulting entries.
*
* Note that re-mapping an address range without first unmapping
* it is not supported, so TLB invalidation is not required here
* and is instead performed at unmap and domain-init time.
*/
do {
int i = 1;
u64 set_bit = 0;
pteval &= ~ARM_SMMU_PTE_CONT;
if (arm_smmu_pte_is_contiguous_range(addr, end,
__pfn_to_phys(pfn))) {
i = ARM_SMMU_PTE_CONT_ENTRIES;
pteval |= ARM_SMMU_PTE_CONT;
} else if (pte_val(*pte) &
(ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
int j;
pte_t *cont_start;
unsigned long idx = pte_index(addr);
idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
cont_start = pmd_page_vaddr(*pmd) + idx;
for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
pte_val(*(cont_start + j)) &=
~ARM_SMMU_PTE_CONT;
arm_smmu_flush_pgtable(smmu, cont_start,
sizeof(*pte) *
ARM_SMMU_PTE_CONT_ENTRIES);
}
if (!pfn) {
memset(pte, 0, i * sizeof(*pte));
addr += i * PAGE_SIZE;
pte += i;
continue;
}
if (prot & DMA_FOR_NVLINK)
set_bit = (1 << (NVLINK_PHY_BIT - PAGE_SHIFT));
do {
*pte = pfn_pte(pfn | set_bit, __pgprot(pteval));
} while (pte++, pfn++, addr += PAGE_SIZE, --i);
} while (addr != end);
arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
return 0;
}
static int arm_smmu_alloc_init_pmd(struct arm_smmu_domain *domain, pud_t *pud,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot, int stage)
{
int ret;
pmd_t *pmd = NULL;
unsigned long next, pfn = __phys_to_pfn(phys);
#ifndef __PAGETABLE_PMD_FOLDED
if (pud_none(*pud)) {
pmd = (pmd_t *) arm_smmu_alloc_pgtable_page(domain, 1,
pud, addr);
if (!pmd)
return -ENOMEM;
}
#endif
if (!pmd)
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
ret = arm_smmu_alloc_init_pte(domain, pmd, addr, next, pfn,
prot, stage);
if (phys)
phys += next - addr;
pfn = __phys_to_pfn(phys);
} while (pmd++, addr = next, addr < end);
return ret;
}
static int arm_smmu_alloc_init_pud(struct arm_smmu_domain *domain, pgd_t *pgd,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot, int stage)
{
int ret = 0;
pud_t *pud = NULL;
unsigned long next;
#ifndef __PAGETABLE_PUD_FOLDED
if (pgd_none(*pgd)) {
pud = (pud_t *) arm_smmu_alloc_pgtable_page(domain, 0,
pgd, addr);
if (!pud)
return -ENOMEM;
}
#endif
if (!pud)
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
ret = arm_smmu_alloc_init_pmd(domain, pud, addr, next, phys,
prot, stage);
if (phys)
phys += next - addr;
} while (pud++, addr = next, addr < end);
return ret;
}
static void get_pte_info(struct arm_smmu_cfg *cfg, ulong iova,
pgdval_t *pgdval, pudval_t *pudval, pmdval_t *pmdval, pteval_t *pteval)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
*pgdval = *pudval = *pmdval = *pteval = 0;
pgd = cfg->pgd + pgd_index(iova);
*pgdval = pgd_val(*pgd);
if (pgd_none(*pgd))
return;
pud = pud_offset(pgd, iova);
*pudval = pud_val(*pud);
if (pud_none(*pud))
return;
pmd = pmd_offset(pud, iova);
*pmdval = pmd_val(*pmd);
if (pmd_none(*pmd))
return;
pte = pmd_page_vaddr(*pmd) + pte_index(iova);
*pteval = pte_val(*pte);
}
static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
unsigned long iova, phys_addr_t paddr,
size_t size, unsigned long prot)
{
int ret, stage;
unsigned long end, iova_orig = iova;
phys_addr_t input_mask, output_mask;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd = cfg->pgd;
unsigned long flags;
u64 time_before = 0;
if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
stage = 2;
input_mask = (1ULL << smmu->s2_input_size) - 1;
output_mask = (1ULL << smmu->s2_output_size) - 1;
} else {
stage = 1;
input_mask = (1ULL << smmu->s1_input_size) - 1;
output_mask = (1ULL << smmu->s1_output_size) - 1;
}
if (!pgd)
return -EINVAL;
if (size & ~PAGE_MASK)
return -EINVAL;
if ((phys_addr_t)iova & ~input_mask)
return -ERANGE;
if (paddr & ~output_mask)
return -ERANGE;
if (test_bit(cfg->cbndx, smmu->context_filter)) {
pr_debug("cbndx=%d iova=%pad paddr=%pap size=%zx prot=%lx skip=%d\n",
cfg->cbndx, &iova, &paddr, size, prot,
arm_smmu_skip_mapping);
}
if (arm_smmu_skip_mapping)
return 0;
#ifdef CONFIG_TRACEPOINTS
if (static_key_false(&__tracepoint_arm_smmu_handle_mapping.key)
&& test_bit(cfg->cbndx, smmu->context_filter))
time_before = local_clock();
#endif
spin_lock_irqsave(&smmu_domain->lock, flags);
pgd += pgd_index(iova);
end = iova + size;
do {
unsigned long next = pgd_addr_end(iova, end);
ret = arm_smmu_alloc_init_pud(smmu_domain, pgd, iova, next, paddr,
prot, stage);
if (ret)
goto out_unlock;
if (paddr)
paddr += next - iova;
iova = next;
} while (pgd++, iova != end);
out_unlock:
if (arm_smmu_tlb_inv_at_map) {
if (arm_smmu_tlb_inv_by_addr)
arm_smmu_tlb_inv_range(smmu_domain,
iova, iova - iova_orig);
else
arm_smmu_tlb_inv_context(smmu_domain);
}
spin_unlock_irqrestore(&smmu_domain->lock, flags);
if (time_before)
trace_arm_smmu_handle_mapping(time_before, cfg->cbndx,
iova_orig, paddr, size, prot);
return ret;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
static size_t arm_smmu_map_sg(struct iommu_domain *domain, unsigned long iova,
struct scatterlist *sgl, unsigned int npages,
unsigned long prot)
{
int i;
struct scatterlist *sg;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
for (i = 0, sg = sgl; i < npages; sg = sg_next(sg)) {
int err;
phys_addr_t pa = sg_phys(sg) & PAGE_MASK;
unsigned int len = PAGE_ALIGN(sg->offset + sg->length);
pr_debug("%s() iova=%pad pa=%pap size=%x\n",
__func__, &iova, &pa, len);
err = arm_smmu_handle_mapping(smmu_domain, iova, pa, len, prot);
if (err)
return err;
i += len >> PAGE_SHIFT;
iova += len;
}
return 0;
}
#endif
static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, unsigned long prot)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
if (!smmu_domain)
return -ENODEV;
return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
}
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t size)
{
int ret;
u64 time_before = 0;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
#ifdef CONFIG_TRACEPOINTS
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
if (static_key_false(&__tracepoint_arm_smmu_unmap.key)
&& test_bit(cfg->cbndx, smmu->context_filter))
time_before = local_clock();
#endif
ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
if (!arm_smmu_tlb_inv_at_map) {
if (arm_smmu_tlb_inv_by_addr)
arm_smmu_tlb_inv_range(smmu_domain, iova, size);
else
arm_smmu_tlb_inv_context(smmu_domain);
}
if (time_before)
trace_arm_smmu_unmap(time_before, iova, size);
return ret ? 0 : size;
}
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
pgd_t *pgdp, pgd;
pud_t pud;
pmd_t pmd;
pte_t pte;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgdp = cfg->pgd;
if (!pgdp)
return 0;
pgd = *(pgdp + pgd_index(iova));
if (pgd_none(pgd))
return 0;
pud = *pud_offset(&pgd, iova);
if (pud_none(pud))
return 0;
pmd = *pmd_offset(&pud, iova);
if (pmd_none(pmd))
return 0;
pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
if (pte_none(pte))
return 0;
return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
}
static bool arm_smmu_capable(enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
/*
* Return true here as the SMMU can always send out coherent
* requests.
*/
return true;
case IOMMU_CAP_INTR_REMAP:
return true; /* MSIs are just memory writes */
default:
return false;
}
}
/*
* On Tegra we set the same SID for all PCI devices. As such this function does
* not need to do anything.
*/
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
return 0; /* Continue walking */
}
static int arm_smmu_add_device(struct device *dev)
{
struct arm_smmu_device *smmu;
struct arm_smmu_master_cfg *cfg;
struct iommu_group *group;
struct arm_smmu_master *master;
struct dma_iommu_mapping *mapping;
int ret;
int i;
struct device_node *np = dev_get_dev_node(dev);
struct of_phandle_args args;
struct of_phandle_args master_spec = {0};
int iommus_idx = 0;
bool register_master = false;
if (!smmu_handle)
return -ENODEV;
master_spec.args_count = 0;
while (!of_parse_phandle_with_args(np, "iommus", "#iommu-cells",
iommus_idx++, &args)) {
if (args.np == smmu_handle->dev->of_node) {
master_spec.np = np;
for (i = 0; i < args.args_count; i++) {
if (master_spec.args_count >= MAX_MASTER_STREAMIDS) {
WARN(1, "> %d stream id's not supported, dev=%s",
MAX_MASTER_STREAMIDS, dev_name(dev));
of_node_put(args.np);
return -ENOSPC;
}
master_spec.args[master_spec.args_count++] = args.args[i];
pr_debug("sid=%d, dev_name=%s\n", args.args[i], dev_name(dev));
register_master = true;
}
}
of_node_put(args.np);
}
if (register_master)
(void)register_smmu_master(smmu_handle, dev, &master_spec);
smmu = find_smmu_for_device(dev);
if (!smmu)
return -ENODEV;
group = iommu_group_alloc();
if (IS_ERR(group)) {
dev_err(dev, "Failed to allocate IOMMU group\n");
return PTR_ERR(group);
}
/*
* Don't just use the dev here. That dev won't be a registered SMMU
* master so instead we should use the PCIe root.
*/
master = find_smmu_master(smmu, dev_get_dev_node(dev));
if (!master) {
ret = -ENODEV;
goto out_put_group;
}
cfg = master->cfg;
if (dev_is_pci(dev)) {
struct pci_dev *pdev = to_pci_dev(dev);
pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
&cfg->streamids[0]);
}
iommu_group_set_iommudata(group, cfg, NULL);
ret = iommu_group_add_device(group, dev);
iommu_group_put(group);
if (ret)
return ret;
mapping = tegra_smmu_of_get_master_map(dev, master->cfg->streamids,
master->cfg->num_streamids);
if (IS_ERR_OR_NULL(mapping)) {
ret = PTR_ERR(mapping);
goto out_put_group;
}
ret = arm_iommu_attach_device(dev, mapping);
if (ret)
goto err_attach_dev;
pr_debug("Device added to SMMU: %s\n", dev_name(dev));
return 0;
err_attach_dev:
arm_iommu_release_mapping(mapping);
out_put_group:
iommu_group_put(group);
return ret;
}
static void arm_smmu_remove_device(struct device *dev)
{
iommu_group_remove_device(dev);
}
static const struct iommu_ops arm_smmu_ops = {
.capable = arm_smmu_capable,
.domain_alloc = arm_smmu_domain_alloc,
.domain_free = arm_smmu_domain_free,
.attach_dev = arm_smmu_attach_dev,
.detach_dev = arm_smmu_detach_dev,
.get_hwid = arm_smmu_get_hwid,
#if LINUX_VERSION_CODE > KERNEL_VERSION(4, 9, 0)
.map_sg = default_iommu_map_sg,
#else
.map_sg = arm_smmu_map_sg,
#endif
.map = arm_smmu_map,
.unmap = arm_smmu_unmap,
.iova_to_phys = arm_smmu_iova_to_phys,
.add_device = arm_smmu_add_device,
.remove_device = arm_smmu_remove_device,
.pgsize_bitmap = ALL_PGSIZES_BITMAP,
#if LINUX_VERSION_CODE > KERNEL_VERSION(4, 9, 0)
.ignore_align = 1,
#endif
};
static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
void __iomem *cb_base;
int i = 0, smmu_id = 0;
u32 reg;
u32 gr0_offset = abs(gr0_base - smmu->base[0]);
/* clear global FSR */
while (smmu_id < smmu->num_smmus) {
gr0_base = smmu->base[smmu_id] + gr0_offset;
reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
writel_single(reg, gr0_base + ARM_SMMU_GR0_sGFSR);
smmu_id++;
}
gr0_base = ARM_SMMU_GR0(smmu);
/* Mark all SMRn as invalid and all S2CRn as bypass */
for (i = 0; i < smmu->num_mapping_groups; ++i) {
if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
writel_relaxed(S2CR_TYPE_BYPASS,
gr0_base + ARM_SMMU_GR0_S2CR(i));
}
/* Make sure all context banks are disabled and clear CB_FSR */
for (i = 0; i < smmu->num_context_banks; ++i) {
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
}
/* Invalidate the TLB, just in case */
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
/* Enable fault reporting */
reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE | sCR0_USFCFG);
/* Disable TLB broadcasting. */
reg |= (sCR0_VMIDPNE | sCR0_PTM);
/* Enable client access, but bypass when no mapping is found */
reg &= ~(sCR0_CLIENTPD);
/* Disable forced broadcasting */
reg &= ~sCR0_FB;
/* Don't upgrade barriers */
reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
/* Push the button */
arm_smmu_tlb_sync(smmu, false);
arm_smmu_tlb_sync(smmu, true);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
}
static int arm_smmu_id_size_to_bits(int size)
{
switch (size) {
case 0:
return 32;
case 1:
return 36;
case 2:
return 40;
case 3:
return 42;
case 4:
return 44;
case 5:
default:
return 48;
}
}
static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
unsigned long size;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
u32 id;
dev_notice(smmu->dev, "probing hardware configuration...\n");
dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
/* ID0 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
dev_err(smmu->dev, "\tno v7 descriptor support!\n");
return -ENODEV;
}
#endif
/* Restrict available stages based on module parameter */
if (force_stage == 1)
id &= ~(ID0_S2TS | ID0_NTS);
else if (force_stage == 2)
id &= ~(ID0_S1TS | ID0_NTS);
if (id & ID0_S1TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
dev_notice(smmu->dev, "\tstage 1 translation\n");
}
if (id & ID0_S2TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
dev_notice(smmu->dev, "\tstage 2 translation\n");
}
if (id & ID0_NTS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
dev_notice(smmu->dev, "\tnested translation\n");
}
if (!(smmu->features &
(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
dev_err(smmu->dev, "\tno translation support!\n");
return -ENODEV;
}
if (id & ID0_CTTW) {
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
dev_notice(smmu->dev, "\tcoherent table walk\n");
}
smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
ID0_NUMSMRG_MASK;
if (id & ID0_SMS) {
u32 smr, sid, mask;
smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
if (smmu->num_mapping_groups == 0) {
dev_err(smmu->dev,
"stream-matching supported, but no SMRs present!\n");
return -ENODEV;
}
smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
if ((mask & sid) != sid) {
dev_err(smmu->dev,
"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
mask, sid);
return -ENODEV;
}
dev_notice(smmu->dev,
"\tstream matching with %u register groups, mask 0x%x",
smmu->num_mapping_groups, mask);
} else {
dev_notice(smmu->dev,
"\tstream indexing with %u indices",
smmu->num_mapping_groups);
}
/* ID1 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
/* Check for size mismatch of SMMU address space from mapped region */
size = 1 <<
(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
size *= 2 << smmu->pgshift;
if (smmu->size != size) {
dev_info(smmu->dev,
"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
size, smmu->size);
smmu->size = size;
}
smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
ID1_NUMS2CB_MASK;
smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
if (smmu->num_s2_context_banks > smmu->num_context_banks) {
dev_err(smmu->dev, "impossible number of S2 context banks!\n");
return -ENODEV;
}
dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
smmu->num_context_banks, smmu->num_s2_context_banks);
/* ID2 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
/* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
#ifdef CONFIG_64BIT
smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
#else
smmu->s2_input_size = min(32UL, size);
#endif
/* The stage-2 output mask is also applied for bypass */
size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
if (smmu->version == ARM_SMMU_V1) {
smmu->s1_input_size = 32;
} else {
#ifdef CONFIG_64BIT
size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
#else
size = 32;
#endif
smmu->s1_input_size = size;
if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
(PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
(PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
PAGE_SIZE);
return -ENODEV;
}
}
if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
smmu->s1_input_size, smmu->s1_output_size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
smmu->s2_input_size, smmu->s2_output_size);
return 0;
}
#define defreg(_name) \
{ \
.name = __stringify(_name), \
.offset = ARM_SMMU_ ## _name, \
}
#define defreg_gr0(_name) defreg(GR0_ ## _name)
static const struct debugfs_reg32 arm_smmu_gr0_regs[] = {
defreg_gr0(sCR0),
defreg_gr0(ID0),
defreg_gr0(ID1),
defreg_gr0(ID2),
defreg_gr0(sGFSR),
defreg_gr0(sGFSYNR0),
defreg_gr0(sGFSYNR1),
defreg_gr0(sTLBGSTATUS),
defreg_gr0(nsCR0),
defreg_gr0(nsGFSR),
defreg_gr0(nsGFSYNR0),
defreg_gr0(nsGFSYNR1),
defreg_gr0(nsTLBGSTATUS),
defreg_gr0(PIDR2),
};
#define defreg_gnsr0(_name) defreg(GNSR0_ ## _name)
static const struct debugfs_reg32 arm_smmu_gnsr0_regs[] = {
defreg_gnsr0(PMCNTENSET_0),
defreg_gnsr0(PMCNTENCLR_0),
defreg_gnsr0(PMINTENSET_0),
defreg_gnsr0(PMINTENCLR_0),
defreg_gnsr0(PMOVSCLR_0),
defreg_gnsr0(PMOVSSET_0),
defreg_gnsr0(PMCFGR_0),
defreg_gnsr0(PMCR_0),
defreg_gnsr0(PMCEID0_0),
defreg_gnsr0(PMAUTHSTATUS_0),
defreg_gnsr0(PMDEVTYPE_0)
};
static ssize_t smmu_context_filter_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
s16 cbndx;
char *pbuf, *temp, *val;
bool first_times = 1;
ssize_t ret = count;
struct seq_file *seqf = file->private_data;
struct arm_smmu_device *smmu = seqf->private;
unsigned long *bitmap = smmu->context_filter;
/* Clear bitmap in case of user buf empty */
if (count == 1 && *user_buf == '\n') {
bitmap_zero(bitmap, smmu->num_context_banks);
return ret;
}
pbuf = vmalloc(count + 1);
if (!pbuf)
return -ENOMEM;
if (copy_from_user(pbuf, user_buf, count)) {
ret = -EFAULT;
goto end;
}
if (pbuf[count - 1] == '\n')
pbuf[count - 1] = '\0';
else
pbuf[count] = '\0';
temp = pbuf;
do {
val = strsep(&temp, ",");
if (*val) {
if (kstrtos16(val, 10, &cbndx))
continue;
/* Reset bitmap in case of negative index */
if (cbndx < 0) {
bitmap_fill(bitmap, smmu->num_context_banks);
goto end;
}
if (cbndx >= smmu->num_context_banks) {
dev_err(smmu->dev,
"context filter index out of range\n");
ret = -EINVAL;
goto end;
}
if (first_times) {
bitmap_zero(bitmap, smmu->num_context_banks);
first_times = 0;
}
set_bit(cbndx, bitmap);
}
} while (temp);
end:
vfree(pbuf);
return ret;
}
static int smmu_context_filter_show(struct seq_file *s, void *unused)
{
struct arm_smmu_device *smmu = s->private;
unsigned long *bitmap = smmu->context_filter;
int idx = 0;
while (1) {
idx = find_next_bit(bitmap, ARM_SMMU_MAX_CBS, idx);
if (idx >= smmu->num_context_banks)
break;
seq_printf(s, "%d,", idx);
idx++;
}
seq_putc(s, '\n');
return 0;
}
static int smmu_context_filter_open(struct inode *inode, struct file *file)
{
return single_open(file, smmu_context_filter_show, inode->i_private);
}
static const struct file_operations smmu_context_filter_fops = {
.open = smmu_context_filter_open,
.read = seq_read,
.write = smmu_context_filter_write,
.llseek = seq_lseek,
.release = single_release,
};
static int smmu_reg32_debugfs_set(void *data, u64 val)
{
struct debugfs_reg32 *regs = (struct debugfs_reg32 *)data;
writel(val, (smmu_handle->base[debug_smmu_id] + regs->offset));
return 0;
}
static int smmu_reg32_debugfs_get(void *data, u64 *val)
{
struct debugfs_reg32 *regs = (struct debugfs_reg32 *)data;
*val = readl(smmu_handle->base[debug_smmu_id] + regs->offset);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(smmu_reg32_debugfs_fops,
smmu_reg32_debugfs_get,
smmu_reg32_debugfs_set, "%08llx\n");
static int smmu_perf_regset_debugfs_set(void *data, u64 val)
{
struct debugfs_reg32 *regs = (struct debugfs_reg32 *)data;
writel(val, (smmu_handle->perf_regset->base + regs->offset));
return 0;
}
static int smmu_perf_regset_debugfs_get(void *data, u64 *val)
{
struct debugfs_reg32 *regs = (struct debugfs_reg32 *)data;
*val = readl(smmu_handle->perf_regset->base + regs->offset);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(smmu_perf_regset_debugfs_fops,
smmu_perf_regset_debugfs_get,
smmu_perf_regset_debugfs_set, "%08llx\n");
static void arm_smmu_debugfs_delete(struct arm_smmu_device *smmu)
{
int i;
if (smmu->regset) {
const struct debugfs_reg32 *regs = smmu->regset->regs;
regs += ARRAY_SIZE(arm_smmu_gr0_regs);
for (i = 0; i < 4 * smmu->num_context_banks; i++)
kfree(regs[i].name);
kfree(smmu->regset);
}
if (smmu->perf_regset) {
const struct debugfs_reg32 *regs = smmu->perf_regset->regs;
i = ARRAY_SIZE(arm_smmu_gnsr0_regs);
for (; i < smmu->perf_regset->nregs ; i++)
kfree(regs[i].name);
kfree(smmu->perf_regset);
smmu->perf_regset = NULL;
}
debugfs_remove_recursive(smmu->debugfs_root);
}
static int debug_smmu_id_debugfs_set(void *data, u64 val)
{
struct arm_smmu_device *smmu = (struct arm_smmu_device *)data;
if (val >= smmu->num_smmus)
return -EINVAL;
debug_smmu_id = (s8)val;
smmu->regset->base = smmu->base[debug_smmu_id];
smmu->perf_regset->base = smmu->regset->base + 3 * (1 << smmu->pgshift);
return 0;
}
static int debug_smmu_id_debugfs_get(void *data, u64 *val)
{
*val = debug_smmu_id;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_smmu_id_debugfs_fops,
debug_smmu_id_debugfs_get,
debug_smmu_id_debugfs_set, "%08llx\n");
static void arm_smmu_debugfs_create(struct arm_smmu_device *smmu)
{
int i;
struct debugfs_reg32 *regs;
size_t bytes;
struct dentry *dent_gr, *dent_gnsr;
smmu->debugfs_root = debugfs_create_dir(dev_name(smmu->dev), NULL);
if (!smmu->debugfs_root)
return;
debugfs_create_file("debug_smmu_id", S_IRUGO | S_IWUSR,
smmu->debugfs_root, smmu, &debug_smmu_id_debugfs_fops);
dent_gr = debugfs_create_dir("gr", smmu->debugfs_root);
if (!dent_gr)
goto err_out;
dent_gnsr = debugfs_create_dir("gnsr", smmu->debugfs_root);
if (!dent_gnsr)
goto err_out;
smmu->masters_root = debugfs_create_dir("masters", smmu->debugfs_root);
if (!smmu->masters_root)
goto err_out;
bytes = (smmu->num_context_banks + 1) * sizeof(*smmu->regset);
bytes += ARRAY_SIZE(arm_smmu_gr0_regs) * sizeof(*regs);
bytes += 4 * smmu->num_context_banks * sizeof(*regs);
smmu->regset = kzalloc(bytes, GFP_KERNEL);
if (!smmu->regset)
goto err_out;
smmu->regset->base = smmu->base[0];
smmu->regset->nregs = ARRAY_SIZE(arm_smmu_gr0_regs) +
4 * smmu->num_context_banks;
smmu->regset->regs = (struct debugfs_reg32 *)(smmu->regset +
smmu->num_context_banks + 1);
regs = (struct debugfs_reg32 *)smmu->regset->regs;
for (i = 0; i < ARRAY_SIZE(arm_smmu_gr0_regs); i++) {
regs->name = arm_smmu_gr0_regs[i].name;
regs->offset = arm_smmu_gr0_regs[i].offset;
regs++;
}
for (i = 0; i < smmu->num_context_banks; i++) {
regs->name = kasprintf(GFP_KERNEL, "GR0_SMR%03d", i);
if (!regs->name)
goto err_out;
regs->offset = ARM_SMMU_GR0_SMR(i);
regs++;
regs->name = kasprintf(GFP_KERNEL, "GR0_S2CR%03d", i);
if (!regs->name)
goto err_out;
regs->offset = ARM_SMMU_GR0_S2CR(i);
regs++;
regs->name = kasprintf(GFP_KERNEL, "GR1_CBAR%03d", i);
if (!regs->name)
goto err_out;
regs->offset = (1 << smmu->pgshift) + ARM_SMMU_GR1_CBAR(i);
regs++;
regs->name = kasprintf(GFP_KERNEL, "GR1_CBA2R%03d", i);
if (!regs->name)
goto err_out;
regs->offset = (1 << smmu->pgshift) + ARM_SMMU_GR1_CBA2R(i);
regs++;
}
regs = (struct debugfs_reg32 *)smmu->regset->regs;
for (i = 0; i < smmu->regset->nregs; i++) {
debugfs_create_file(regs->name, S_IRUGO | S_IWUSR,
dent_gr, regs, &smmu_reg32_debugfs_fops);
regs++;
}
debugfs_create_regset32("regdump", S_IRUGO, smmu->debugfs_root,
smmu->regset);
bytes = sizeof(*smmu->perf_regset);
bytes += ARRAY_SIZE(arm_smmu_gnsr0_regs) * sizeof(*regs);
/*
* Account the number of bytes for two sets of
* counter group registers
*/
bytes += 2 * PMCG_SIZE * sizeof(*regs);
/*
* Account the number of bytes for two sets of
* event counter registers
*/
bytes += 2 * PMEV_SIZE * sizeof(*regs);
/* Allocate memory for Perf Monitor registers */
smmu->perf_regset = kzalloc(bytes, GFP_KERNEL);
if (!smmu->perf_regset)
goto err_out;
/*
* perf_regset base address is placed at offset (3 * smmu_pagesize)
* from smmu->base address
*/
smmu->perf_regset->base = smmu->base[0] + 3 * (1 << smmu->pgshift);
smmu->perf_regset->nregs = ARRAY_SIZE(arm_smmu_gnsr0_regs) +
2 * PMCG_SIZE + 2 * PMEV_SIZE;
smmu->perf_regset->regs =
(struct debugfs_reg32 *)(smmu->perf_regset + 1);
regs = (struct debugfs_reg32 *)smmu->perf_regset->regs;
for (i = 0; i < ARRAY_SIZE(arm_smmu_gnsr0_regs); i++) {
regs->name = arm_smmu_gnsr0_regs[i].name;
regs->offset = arm_smmu_gnsr0_regs[i].offset;
regs++;
}
for (i = 0; i < PMEV_SIZE; i++) {
regs->name = kasprintf(GFP_KERNEL, "GNSR0_PMEVTYPER%d_0", i);
if (!regs->name)
goto err_out;
regs->offset = ARM_SMMU_GNSR0_PMEVTYPER(i);
regs++;
regs->name = kasprintf(GFP_KERNEL, "GNSR0_PMEVCNTR%d_0", i);
if (!regs->name)
goto err_out;
regs->offset = ARM_SMMU_GNSR0_PMEVCNTR(i);
regs++;
}
for (i = 0; i < PMCG_SIZE; i++) {
regs->name = kasprintf(GFP_KERNEL, "GNSR0_PMCGCR%d_0", i);
if (!regs->name)
goto err_out;
regs->offset = ARM_SMMU_GNSR0_PMCGCR(i);
regs++;
regs->name = kasprintf(GFP_KERNEL, "GNSR0_PMCGSMR%d_0", i);
if (!regs->name)
goto err_out;
regs->offset = ARM_SMMU_GNSR0_PMCGSMR(i);
regs++;
}
regs = (struct debugfs_reg32 *)smmu->perf_regset->regs;
for (i = 0; i < smmu->perf_regset->nregs; i++) {
debugfs_create_file(regs->name, S_IRUGO | S_IWUSR,
dent_gnsr, regs, &smmu_perf_regset_debugfs_fops);
regs++;
}
debugfs_create_file("context_filter", S_IRUGO | S_IWUSR,
smmu->debugfs_root, smmu,
&smmu_context_filter_fops);
debugfs_create_bool("skip_mapping", S_IRUGO | S_IWUSR,
smmu->debugfs_root, &arm_smmu_skip_mapping);
debugfs_create_bool("gr0_tlbiallnsnh", S_IRUGO | S_IWUSR,
smmu->debugfs_root, &arm_smmu_gr0_tlbiallnsnh);
debugfs_create_bool("tlb_inv_by_addr", S_IRUGO | S_IWUSR,
smmu->debugfs_root, &arm_smmu_tlb_inv_by_addr);
debugfs_create_bool("tlb_inv_at_map", S_IRUGO | S_IWUSR,
smmu->debugfs_root, &arm_smmu_tlb_inv_at_map);
return;
err_out:
arm_smmu_debugfs_delete(smmu);
}
static const struct of_device_id arm_smmu_of_match[] = {
{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
{ .compatible = "t19x,arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
struct resource *res;
struct arm_smmu_device *smmu;
struct device *dev = &pdev->dev;
int num_irqs, i, err;
u32 emu_id = 0;
#ifdef CONFIG_ARM_SMMU_SUSPEND
u32 suspend_save_reg;
#endif
if (tegra_platform_is_unit_fpga())
return -ENODEV;
smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate arm_smmu_device\n");
return -ENOMEM;
}
smmu_handle = smmu;
smmu->dev = dev;
of_id = of_match_node(arm_smmu_of_match, dev->of_node);
smmu->version = (enum arm_smmu_arch_version)of_id->data;
err = tegra_smmu_of_parse_sids(smmu->dev);
if (err) {
pr_err("Unable to parse tegra SIDs!\n");
return -EINVAL;
}
for (i = 0; i < MAX_SMMUS; i++) {
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res)
break;
smmu->base[i] = devm_ioremap_resource(dev, res);
if (IS_ERR(smmu->base[i])) {
if (i == 0)
return PTR_ERR(smmu->base[i]);
break;
}
smmu->base_pa[i] = res->start;
if (i == 0)
smmu->size = resource_size(res);
}
if (i == 0)
return -ENODEV;
smmu->num_smmus = i;
if (of_property_read_u32(dev->of_node, "#global-interrupts",
&smmu->num_global_irqs)) {
dev_err(dev, "missing #global-interrupts property\n");
return -ENODEV;
}
if (of_property_read_u32(dev->of_node, "iso-smmu-id",
(u32 *)&smmu->iso_smmu_id)) {
smmu->iso_smmu_id = -1;
dev_info(dev, "found %d SMMUs\n", smmu->num_smmus);
} else {
if (!tegra_platform_is_fpga()) {
dev_info(dev, "found %d SMMUs and ISO SMMU id is %d\n",
smmu->num_smmus, smmu->iso_smmu_id);
} else {
emu_id = tegra_read_emu_revid();
/* high byte encodes FPGA config: GPU(2), MAX(3) have ISO SMMU */
if ((emu_id >> 24) > 1) {
dev_info(dev,
"found %d SMMUs and ISO SMMU id is %d\n",
smmu->num_smmus, smmu->iso_smmu_id);
} else {
smmu->iso_smmu_id = -1;
smmu->num_smmus--;
dev_info(dev, "found %d SMMUs\n",
smmu->num_smmus);
}
}
}
num_irqs = 0;
while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
num_irqs++;
if (num_irqs > smmu->num_global_irqs)
smmu->num_context_irqs++;
}
smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
GFP_KERNEL);
if (!smmu->irqs) {
dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
return -ENOMEM;
}
for (i = 0; i < num_irqs; ++i) {
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
dev_err(dev, "failed to get irq index %d\n", i);
return -ENODEV;
}
smmu->irqs[i] = irq;
}
err = arm_smmu_device_cfg_probe(smmu);
if (err)
return err;
bitmap_fill(smmu->context_filter, smmu->num_context_banks);
smmu->masters = RB_ROOT;
parse_driver_options(smmu);
for (i = 0; i < smmu->num_global_irqs; ++i) {
err = request_irq(smmu->irqs[i],
arm_smmu_global_fault,
IRQF_SHARED,
"arm-smmu global fault",
smmu);
if (err) {
dev_err(dev, "failed to request global IRQ %d (%u)\n",
i, smmu->irqs[i]);
goto out_free_irqs;
}
}
#ifdef CONFIG_ARM_SMMU_SUSPEND
if (!of_property_read_u32(dev->of_node, "suspend-save-reg",
&suspend_save_reg)) {
err = arm_smmu_suspend_init(smmu->base, smmu->base_pa,
smmu->num_smmus, smmu->size,
smmu->pgshift, suspend_save_reg);
if (err) {
dev_err(dev, "failed to init arm_smu_suspend\n");
goto out_free_irqs;
}
}
#endif
INIT_LIST_HEAD(&smmu->list);
spin_lock(&arm_smmu_devices_lock);
list_add(&smmu->list, &arm_smmu_devices);
spin_unlock(&arm_smmu_devices_lock);
arm_smmu_device_reset(smmu);
arm_smmu_debugfs_create(smmu);
return 0;
out_free_irqs:
while (i--)
free_irq(smmu->irqs[i], smmu);
return err;
}
static int arm_smmu_device_remove(struct platform_device *pdev)
{
int i;
struct device *dev = &pdev->dev;
struct arm_smmu_device *curr, *smmu = NULL;
struct rb_node *node;
spin_lock(&arm_smmu_devices_lock);
list_for_each_entry(curr, &arm_smmu_devices, list) {
if (curr->dev == dev) {
smmu = curr;
list_del(&smmu->list);
break;
}
}
spin_unlock(&arm_smmu_devices_lock);
if (!smmu)
return -ENODEV;
arm_smmu_debugfs_delete(smmu);
for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
struct arm_smmu_master *master
= container_of(node, struct arm_smmu_master, node);
of_node_put(master->of_node);
}
if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
dev_err(dev, "removing device with active domains!\n");
for (i = 0; i < smmu->num_global_irqs; ++i)
free_irq(smmu->irqs[i], smmu);
/* Turn the thing off */
writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
return 0;
}
static struct platform_driver arm_smmu_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "t19x-arm-smmu",
.of_match_table = of_match_ptr(arm_smmu_of_match),
.suppress_bind_attrs = true,
},
.probe = arm_smmu_device_dt_probe,
.remove = arm_smmu_device_remove,
};
static bool init_done;
static int __init arm_smmu_init(void)
{
int ret;
ret = platform_driver_register(&arm_smmu_driver);
if (ret)
return ret;
/* Oh, for a proper bus abstraction */
if (!iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
if (!iommu_present(&amba_bustype))
bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
if (!iommu_present(&pci_bus_type))
bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
#endif
init_done = true;
return 0;
}
static void __exit arm_smmu_exit(void)
{
return platform_driver_unregister(&arm_smmu_driver);
}
module_exit(arm_smmu_exit);
static int __init arm_smmu_of_setup(struct device_node *np)
{
struct platform_device *pdev;
if (!init_done)
arm_smmu_init();
pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
if (IS_ERR(pdev))
return PTR_ERR(pdev);
of_iommu_set_ops(np, (struct iommu_ops *)&arm_smmu_ops);
return 0;
}
IOMMU_OF_DECLARE(arm_smmu_of, "t19x,arm,mmu-500", arm_smmu_of_setup);
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");