Jetpack/kernel/nvidia/drivers/iio/light/nvs_isl2902x.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

1067 lines
25 KiB
C

/* Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* The NVS = NVidia Sensor framework */
/* See nvs_iio.c and nvs.h for documentation */
/* See nvs_light.c and nvs_light.h for documentation */
/* See nvs_proximity.c and nvs_proximity.h for documentation */
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/regulator/consumer.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/nvs.h>
#include <linux/nvs_light.h>
#include <linux/nvs_proximity.h>
#define ISL_DRIVER_VERSION (3)
#define ISL_VENDOR "InterSil"
#define ISL_NAME "isl2902x"
#define ISL_NAME_ISL29028 "isl29028"
#define ISL_NAME_ISL29029 "isl29029"
#define ISL_DEVID_ISL29028 (0x28)
#define ISL_DEVID_ISL29029 (0x29)
#define ISL_HW_DELAY_MS (1)
#define ISL_POLL_DLY_MS_DFLT (2000)
#define ISL_POLL_DLY_MS_MIN (100)
#define ISL_POLL_DLY_MS_MAX (60000)
#define ISL_CFG_DFLT (0x00)
#define ISL_INT_DFLT (0x00)
/* light defines */
#define ISL_LIGHT_THRESHOLD_DFLT (50)
#define ISL_LIGHT_VERSION (1)
#define ISL_LIGHT_MAX_RANGE_IVAL (14323)
#define ISL_LIGHT_MAX_RANGE_MICRO (0)
#define ISL_LIGHT_RESOLUTION_IVAL (0)
#define ISL_LIGHT_RESOLUTION_MICRO (14000)
#define ISL_LIGHT_MILLIAMP_IVAL (0)
#define ISL_LIGHT_MILLIAMP_MICRO (96000)
#define ISL_LIGHT_SCALE_IVAL (0)
#define ISL_LIGHT_SCALE_MICRO (1000)
/* proximity defines */
#define ISL_PROX_THRESHOLD_LO (20)
#define ISL_PROX_THRESHOLD_HI (100)
#define ISL_PROX_VERSION (1)
/* setting max_range and resolution to 1.0 = binary proximity */
#define ISL_PROX_MAX_RANGE_IVAL (1)
#define ISL_PROX_MAX_RANGE_MICRO (0)
#define ISL_PROX_RESOLUTION_IVAL (1)
#define ISL_PROX_RESOLUTION_MICRO (0)
#define ISL_PROX_MILLIAMP_IVAL (0)
#define ISL_PROX_MILLIAMP_MICRO (80000)
#define ISL_PROX_SCALE_IVAL (0)
#define ISL_PROX_SCALE_MICRO (0)
/* HW registers */
#define ISL_REG_CFG (0x01)
#define ISL_REG_CFG_POR (0x00)
#define ISL_REG_CFG_ALSIR_MODE (0)
#define ISL_REG_CFG_ALS_RANGE (1)
#define ISL_REG_CFG_ALS_EN (2)
#define ISL_REG_CFG_PROX_DR (3)
#define ISL_REG_CFG_PROX_SLP (4)
#define ISL_REG_CFG_PROX_EN (7)
#define ISL_REG_INT (0x02)
#define ISL_REG_INT_INT_CTRL (0)
#define ISL_REG_INT_ALS_PRST (1)
#define ISL_REG_INT_ALS_FLAG (3)
#define ISL_REG_INT_PROX_PRST (5)
#define ISL_REG_INT_PROX_FLAG (7)
#define ISL_REG_PROX_LT (0x03)
#define ISL_REG_PROX_HT (0x04)
#define ISL_REG_ALSIR_TH1 (0x05)
#define ISL_REG_ALSIR_TH2 (0x06)
#define ISL_REG_ALSIR_TH2_POR (0xF0) /* used to ID device */
#define ISL_REG_ALSIR_TH3 (0x07)
#define ISL_REG_PROX_DATA (0x08)
#define ISL_REG_ALSIR_DT1 (0x09)
#define ISL_REG_ALSIR_DT2 (0x0A)
#define ISL_REG_TEST1 (0x0E)
#define ISL_REG_TEST2 (0x0F)
/* devices */
#define ISL_DEV_LIGHT (0)
#define ISL_DEV_PROX (1)
#define ISL_DEV_N (2)
/* regulator names in order of powering on */
static char *isl_vregs[] = {
"vdd",
};
static unsigned short isl_i2c_addrs[] = {
0x44,
0x45,
};
static struct nvs_light_dynamic isl_nld_tbl[] = {
{{0, 32600}, {1334, 970000}, {0, 96000}, 112, 0x00},
{{0, 522000}, {2137, 590000}, {0, 96000}, 112, 0x02}
};
struct isl_state {
struct i2c_client *i2c;
struct nvs_fn_if *nvs;
void *nvs_st[ISL_DEV_N];
struct sensor_cfg cfg[ISL_DEV_N];
struct workqueue_struct *wq;
struct work_struct ws;
struct regulator_bulk_data vreg[ARRAY_SIZE(isl_vregs)];
struct nvs_light light;
struct nvs_proximity prox;
unsigned int sts; /* status flags */
unsigned int errs; /* error count */
unsigned int enabled; /* enable status */
bool irq_dis; /* interrupt host disable flag */
bool irq_set_irq_wake; /* IRQ suspend active */
u16 i2c_addr; /* I2C address */
u8 dev_id; /* device ID */
u8 reg_cfg; /* configuration register default */
u8 reg_int; /* interrupt register default */
u8 rc_cfg; /* cache of main configuration */
};
static void isl_err(struct isl_state *st)
{
st->errs++;
if (!st->errs)
st->errs--;
}
static void isl_mutex_lock(struct isl_state *st)
{
unsigned int i;
if (st->nvs) {
for (i = 0; i < ISL_DEV_N; i++) {
if (st->nvs_st[i])
st->nvs->nvs_mutex_lock(st->nvs_st[i]);
}
}
}
static void isl_mutex_unlock(struct isl_state *st)
{
unsigned int i;
if (st->nvs) {
for (i = 0; i < ISL_DEV_N; i++) {
if (st->nvs_st[i])
st->nvs->nvs_mutex_unlock(st->nvs_st[i]);
}
}
}
static int isl_i2c_read(struct isl_state *st, u8 reg, u16 len, u8 *val)
{
struct i2c_msg msg[2];
msg[0].addr = st->i2c_addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &reg;
msg[1].addr = st->i2c_addr;
msg[1].flags = I2C_M_RD;
msg[1].len = len;
msg[1].buf = val;
if (i2c_transfer(st->i2c->adapter, msg, 2) != 2) {
isl_err(st);
return -EIO;
}
return 0;
}
static int isl_i2c_rd(struct isl_state *st, u8 reg, u8 *val)
{
return isl_i2c_read(st, reg, 1, val);
}
static int isl_i2c_write(struct isl_state *st, u16 len, u8 *buf)
{
struct i2c_msg msg;
int ret = -ENODEV;
if (st->i2c_addr) {
msg.addr = st->i2c_addr;
msg.flags = 0;
msg.len = len;
msg.buf = buf;
if (i2c_transfer(st->i2c->adapter, &msg, 1) == 1) {
ret = 0;
} else {
isl_err(st);
ret = -EIO;
}
}
return ret;
}
static int isl_i2c_wr(struct isl_state *st, u8 reg, u8 val)
{
u8 buf[2];
buf[0] = reg;
buf[1] = val;
return isl_i2c_write(st, sizeof(buf), buf);
}
static int isl_reset_sw(struct isl_state *st)
{
/* Note that the SW reset doesn't set registers to a POR state */
int ret;
ret = isl_i2c_wr(st, ISL_REG_CFG, 0);
if (ret)
return ret;
else
st->rc_cfg = 0;
ret |= isl_i2c_wr(st, ISL_REG_TEST2, 0x29);
ret |= isl_i2c_wr(st, ISL_REG_TEST1, 0);
ret |= isl_i2c_wr(st, ISL_REG_TEST2, 0);
if (!ret) {
mdelay(ISL_HW_DELAY_MS);
st->rc_cfg = ISL_REG_CFG_POR;
}
return ret;
}
static int isl_pm(struct isl_state *st, bool enable)
{
int ret = 0;
if (enable) {
nvs_vregs_enable(&st->i2c->dev, st->vreg,
ARRAY_SIZE(isl_vregs));
if (ret)
mdelay(ISL_HW_DELAY_MS);
ret = isl_reset_sw(st);
} else {
ret = nvs_vregs_sts(st->vreg, ARRAY_SIZE(isl_vregs));
if ((ret < 0) || (ret == ARRAY_SIZE(isl_vregs))) {
ret = isl_i2c_wr(st, ISL_REG_CFG, 0);
} else if (ret > 0) {
nvs_vregs_enable(&st->i2c->dev, st->vreg,
ARRAY_SIZE(isl_vregs));
mdelay(ISL_HW_DELAY_MS);
ret = isl_i2c_wr(st, ISL_REG_CFG, 0);
}
ret |= nvs_vregs_disable(&st->i2c->dev, st->vreg,
ARRAY_SIZE(isl_vregs));
}
if (ret > 0)
ret = 0;
if (ret) {
dev_err(&st->i2c->dev, "%s pwr=%x ERR=%d\n",
__func__, enable, ret);
} else {
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&st->i2c->dev, "%s pwr=%x\n",
__func__, enable);
}
return ret;
}
static void isl_pm_exit(struct isl_state *st)
{
isl_pm(st, false);
nvs_vregs_exit(&st->i2c->dev, st->vreg, ARRAY_SIZE(isl_vregs));
}
static int isl_pm_init(struct isl_state *st)
{
int ret;
st->enabled = 0;
nvs_vregs_init(&st->i2c->dev,
st->vreg, ARRAY_SIZE(isl_vregs), isl_vregs);
ret = isl_pm(st, true);
return ret;
}
static void isl_disable_irq(struct isl_state *st)
{
if (!st->irq_dis) {
disable_irq_nosync(st->i2c->irq);
st->irq_dis = true;
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&st->i2c->dev, "%s IRQ disabled\n", __func__);
}
}
static void isl_enable_irq(struct isl_state *st)
{
if (st->irq_dis) {
enable_irq(st->i2c->irq);
st->irq_dis = false;
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&st->i2c->dev, "%s IRQ enabled\n", __func__);
}
}
static int isl_cmd_wr(struct isl_state *st, unsigned int enable, bool irq_en)
{
u8 reg_cfg = st->reg_cfg;
int ret;
int ret_t = 0;
if ((st->i2c->irq > 0) && !irq_en) {
isl_disable_irq(st);
/* clear possible IRQ */
ret_t = isl_i2c_wr(st, ISL_REG_INT, st->reg_int);
}
if (enable & (1 << ISL_DEV_LIGHT))
reg_cfg |= (1 << ISL_REG_CFG_ALS_EN);
if (enable & (1 << ISL_DEV_PROX))
reg_cfg |= (1 << ISL_REG_CFG_PROX_EN);
if (reg_cfg != st->rc_cfg) {
ret = isl_i2c_wr(st, ISL_REG_CFG, reg_cfg);
if (ret)
ret_t |= ret;
else
st->rc_cfg = reg_cfg;
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&st->i2c->dev, "%s reg_cfg=%hhx err=%d\n",
__func__, reg_cfg, ret);
}
if (irq_en && (st->i2c->irq > 0)) {
/* clear possible IRQ */
ret_t |= isl_i2c_wr(st, ISL_REG_INT, st->reg_int);
if (!ret_t)
ret_t = 1; /* flag IRQ enabled */
isl_enable_irq(st);
}
return ret_t;
}
static int isl_thr_wr(struct isl_state *st, bool als, u16 thr_lo, u16 thr_hi)
{
u8 buf[4];
u16 len;
u16 thr_le;
int ret = 0;
if (st->i2c->irq > 0) {
if (als) {
buf[0] = ISL_REG_ALSIR_TH1;
thr_le = cpu_to_le16(thr_lo);
buf[1] = thr_le & 0xFF;
buf[2] = (thr_le >> 8) & 0x0F;
thr_le = cpu_to_le16(thr_hi);
buf[2] |= thr_le << 4;
buf[3] = thr_le >> 4;
len = 4;
} else {
buf[0] = ISL_REG_PROX_LT;
buf[1] = thr_lo;
buf[2] = thr_hi;
len = 3;
}
ret = isl_i2c_write(st, len, buf);
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&st->i2c->dev,
"%s reg=%hhx lo=%hd hi=%hd ret=%d\n",
__func__, buf[0], thr_lo, thr_hi, ret);
}
return ret;
}
static int isl_rd_light(struct isl_state *st, s64 ts)
{
u16 hw;
int ret;
ret = isl_i2c_read(st, ISL_REG_ALSIR_DT1, 2, (u8 *)&hw);
if (ret)
return ret;
hw = le16_to_cpu(hw);
if (st->sts & NVS_STS_SPEW_DATA)
dev_info(&st->i2c->dev,
"poll light hw %hu %lld diff=%d %lldns index=%u\n",
hw, ts, hw - st->light.hw, ts - st->light.timestamp,
st->light.nld_i);
st->light.hw = hw;
st->light.timestamp = ts;
ret = nvs_light_read(&st->light);
if (ret < RET_HW_UPDATE)
/* either poll or nothing to do */
return ret;
ret = isl_thr_wr(st, true,
st->light.hw_thresh_lo, st->light.hw_thresh_hi);
return ret;
}
static int isl_rd_prox(struct isl_state *st, s64 ts)
{
u8 hw;
int ret;
ret = isl_i2c_rd(st, ISL_REG_PROX_DATA, &hw);
if (ret)
return ret;
if (st->sts & NVS_STS_SPEW_DATA)
dev_info(&st->i2c->dev,
"poll proximity hw %hu %lld diff=%d %lldns\n",
hw, ts, hw - st->prox.hw, ts - st->prox.timestamp);
st->prox.hw = hw;
st->prox.timestamp = ts;
ret = nvs_proximity_read(&st->prox);
if (ret < RET_HW_UPDATE)
/* either poll or nothing to do */
return ret;
ret = isl_thr_wr(st, false,
st->prox.hw_thresh_lo, st->prox.hw_thresh_hi);
return ret;
}
static int isl_en(struct isl_state *st, unsigned int enable)
{
if (enable & (1 << ISL_DEV_LIGHT))
nvs_light_enable(&st->light);
if (enable & (1 << ISL_DEV_PROX))
nvs_proximity_enable(&st->prox);
return isl_cmd_wr(st, enable, false);
}
static int isl_rd(struct isl_state *st)
{
s64 ts;
int ret = 0;
ts = nvs_timestamp();
if (st->enabled & (1 << ISL_DEV_PROX))
ret |= isl_rd_prox(st, ts);
if (st->enabled & (1 << ISL_DEV_LIGHT))
ret |= isl_rd_light(st, ts);
if (ret < 0)
/* poll if error or more reporting */
ret = isl_cmd_wr(st, st->enabled, false);
else
ret = isl_cmd_wr(st, st->enabled, true);
return ret;
}
static unsigned int isl_polldelay(struct isl_state *st)
{
unsigned int poll_delay_ms = ISL_POLL_DLY_MS_DFLT;
if (st->enabled & (1 << ISL_DEV_LIGHT))
poll_delay_ms = st->light.poll_delay_ms;
if (st->enabled & (1 << ISL_DEV_PROX)) {
if (poll_delay_ms > st->prox.poll_delay_ms)
poll_delay_ms = st->prox.poll_delay_ms;
}
return poll_delay_ms;
}
static int isl_read(struct isl_state *st)
{
int ret;
isl_mutex_lock(st);
ret = isl_rd(st);
isl_mutex_unlock(st);
return ret;
}
static void isl_work(struct work_struct *ws)
{
struct isl_state *st = container_of((struct work_struct *)ws,
struct isl_state, ws);
int ret;
while (st->enabled) {
msleep(isl_polldelay(st));
ret = isl_read(st);
if (ret == RET_HW_UPDATE)
/* switch to IRQ driven */
break;
}
}
static irqreturn_t isl_irq_thread(int irq, void *dev_id)
{
struct isl_state *st = (struct isl_state *)dev_id;
int ret;
if (st->sts & NVS_STS_SPEW_IRQ)
dev_info(&st->i2c->dev, "%s\n", __func__);
if (st->enabled) {
ret = isl_read(st);
if (ret < RET_HW_UPDATE) {
/* switch to polling */
cancel_work_sync(&st->ws);
queue_work(st->wq, &st->ws);
}
}
return IRQ_HANDLED;
}
static int isl_disable(struct isl_state *st, int snsr_id)
{
bool disable = true;
int ret = 0;
if (snsr_id >= 0) {
if (st->enabled & ~(1 << snsr_id)) {
st->enabled &= ~(1 << snsr_id);
disable = false;
}
}
if (disable) {
if (st->i2c->irq > 0)
isl_disable_irq(st);
ret |= isl_pm(st, false);
if (!ret)
st->enabled = 0;
}
return ret;
}
static int isl_enable(void *client, int snsr_id, int enable)
{
struct isl_state *st = (struct isl_state *)client;
int ret;
if (enable < 0)
return st->enabled & (1 << snsr_id);
if (enable) {
enable = st->enabled | (1 << snsr_id);
ret = isl_pm(st, true);
if (!ret) {
ret = isl_en(st, enable);
if (ret < 0) {
isl_disable(st, snsr_id);
} else {
st->enabled = enable;
cancel_work_sync(&st->ws);
queue_work(st->wq, &st->ws);
}
}
} else {
ret = isl_disable(st, snsr_id);
}
return ret;
}
static int isl_batch(void *client, int snsr_id, int flags,
unsigned int period, unsigned int timeout)
{
struct isl_state *st = (struct isl_state *)client;
if (timeout)
/* timeout not supported (no HW FIFO) */
return -EINVAL;
if (snsr_id == ISL_DEV_LIGHT)
st->light.delay_us = period;
else if (snsr_id == ISL_DEV_PROX)
st->prox.delay_us = period;
return 0;
}
static int isl_thresh_lo(void *client, int snsr_id, int thresh_lo)
{
struct isl_state *st = (struct isl_state *)client;
if (snsr_id == ISL_DEV_LIGHT)
nvs_light_threshold_calibrate_lo(&st->light, thresh_lo);
else if (snsr_id == ISL_DEV_PROX)
nvs_proximity_threshold_calibrate_lo(&st->prox, thresh_lo);
return 0;
}
static int isl_thresh_hi(void *client, int snsr_id, int thresh_hi)
{
struct isl_state *st = (struct isl_state *)client;
if (snsr_id == ISL_DEV_LIGHT)
nvs_light_threshold_calibrate_hi(&st->light, thresh_hi);
else if (snsr_id == ISL_DEV_PROX)
nvs_proximity_threshold_calibrate_hi(&st->prox, thresh_hi);
return 0;
}
static int isl_regs(void *client, int snsr_id, char *buf)
{
struct isl_state *st = (struct isl_state *)client;
ssize_t t;
u8 val;
u8 i;
int ret;
t = sprintf(buf, "registers:\n");
for (i = 0; i <= ISL_REG_TEST2; i++) {
ret = isl_i2c_rd(st, i, &val);
if (!ret)
t += sprintf(buf + t, "0x%hhx=0x%hhx\n",
i, val);
}
return t;
}
static int isl_nvs_read(void *client, int snsr_id, char *buf)
{
struct isl_state *st = (struct isl_state *)client;
ssize_t t;
t = sprintf(buf, "driver v.%u\n", ISL_DRIVER_VERSION);
t += sprintf(buf + t, "irq=%d\n", st->i2c->irq);
t += sprintf(buf + t, "irq_set_irq_wake=%x\n", st->irq_set_irq_wake);
t += sprintf(buf + t, "reg_configure=%x\n", st->reg_cfg);
t += sprintf(buf + t, "reg_interrupt=%x\n", st->reg_int);
if (snsr_id == ISL_DEV_LIGHT)
t += nvs_light_dbg(&st->light, buf + t);
else if (snsr_id == ISL_DEV_PROX)
t += nvs_proximity_dbg(&st->prox, buf + t);
return t;
}
static struct nvs_fn_dev isl_fn_dev = {
.enable = isl_enable,
.batch = isl_batch,
.thresh_lo = isl_thresh_lo,
.thresh_hi = isl_thresh_hi,
.regs = isl_regs,
.nvs_read = isl_nvs_read,
};
static int isl_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct isl_state *st = i2c_get_clientdata(client);
unsigned int i;
int ret = 0;
st->sts |= NVS_STS_SUSPEND;
if (st->nvs) {
for (i = 0; i < ISL_DEV_N; i++) {
if (st->nvs_st[i])
ret |= st->nvs->suspend(st->nvs_st[i]);
}
}
/* determine if we'll be operational during suspend */
for (i = 0; i < ISL_DEV_N; i++) {
if ((st->enabled & (1 << i)) && (st->cfg[i].flags &
SENSOR_FLAG_WAKE_UP))
break;
}
if (i < ISL_DEV_N) {
irq_set_irq_wake(st->i2c->irq, 1);
st->irq_set_irq_wake = true;
}
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&client->dev, "%s WAKE_ON=%x\n",
__func__, st->irq_set_irq_wake);
return ret;
}
static int isl_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct isl_state *st = i2c_get_clientdata(client);
unsigned int i;
int ret = 0;
if (st->irq_set_irq_wake) {
irq_set_irq_wake(st->i2c->irq, 0);
st->irq_set_irq_wake = false;
}
if (st->nvs) {
for (i = 0; i < ISL_DEV_N; i++) {
if (st->nvs_st[i])
ret |= st->nvs->resume(st->nvs_st[i]);
}
}
st->sts &= ~NVS_STS_SUSPEND;
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&client->dev, "%s\n", __func__);
return ret;
}
static SIMPLE_DEV_PM_OPS(isl_pm_ops, isl_suspend, isl_resume);
static void isl_shutdown(struct i2c_client *client)
{
struct isl_state *st = i2c_get_clientdata(client);
unsigned int i;
st->sts |= NVS_STS_SHUTDOWN;
if (st->nvs) {
for (i = 0; i < ISL_DEV_N; i++) {
if (st->nvs_st[i])
st->nvs->shutdown(st->nvs_st[i]);
}
}
if (st->sts & NVS_STS_SPEW_MSG)
dev_info(&client->dev, "%s\n", __func__);
}
static int isl_remove(struct i2c_client *client)
{
struct isl_state *st = i2c_get_clientdata(client);
unsigned int i;
if (st != NULL) {
isl_shutdown(client);
if (st->nvs) {
for (i = 0; i < ISL_DEV_N; i++) {
if (st->nvs_st[i])
st->nvs->remove(st->nvs_st[i]);
}
}
if (st->wq) {
destroy_workqueue(st->wq);
st->wq = NULL;
}
isl_pm_exit(st);
}
dev_info(&client->dev, "%s\n", __func__);
return 0;
}
static void isl_id_part(struct isl_state *st, const char *part)
{
unsigned int i;
for (i = 0; i < ISL_DEV_N; i++)
st->cfg[i].part = part;
}
static int isl_id_dev(struct isl_state *st, const char *name)
{
u8 val;
int ret = 0;
if (!strcmp(name, ISL_NAME_ISL29029)) {
st->dev_id = ISL_DEVID_ISL29029;
isl_id_part(st, ISL_NAME_ISL29029);
} else if (!strcmp(name, ISL_NAME_ISL29028)) {
st->dev_id = ISL_DEVID_ISL29028;
isl_id_part(st, ISL_NAME_ISL29028);
} else if (!strcmp(name, ISL_NAME)) {
/* There is no way to auto-detect the device since the
* register space is exactly the same. We'll just confirm
* that our device exists and default to the ISL29029.
*/
st->dev_id = ISL_DEVID_ISL29029;
isl_id_part(st, ISL_NAME_ISL29029);
ret = isl_reset_sw(st);
ret |= isl_i2c_rd(st, ISL_REG_ALSIR_TH2, &val);
if (ret)
return -ENODEV;
/* There is no way to confirm the device because it has a
* memory "feature" when off and the SW reset doesn't set
* registers to the POR state. All we can do is confirm an
* I2C response.
* if (val != ISL_REG_ALSIR_TH2_POR)
* return -ENODEV;
*/
}
return ret;
}
static int isl_id_i2c(struct isl_state *st, const char *name)
{
int i;
int ret;
for (i = 0; i < ARRAY_SIZE(isl_i2c_addrs); i++) {
if (st->i2c->addr == isl_i2c_addrs[i])
break;
}
if (i < ARRAY_SIZE(isl_i2c_addrs)) {
st->i2c_addr = st->i2c->addr;
ret = isl_id_dev(st, name);
} else {
name = ISL_NAME;
for (i = 0; i < ARRAY_SIZE(isl_i2c_addrs); i++) {
st->i2c_addr = isl_i2c_addrs[i];
ret = isl_id_dev(st, name);
if (!ret)
break;
}
}
if (ret)
st->i2c_addr = 0;
return ret;
}
struct sensor_cfg isl_cfg_dflt[] = {
{
.name = NVS_LIGHT_STRING,
.snsr_id = ISL_DEV_LIGHT,
.ch_n = 1,
.ch_sz = 4,
.part = ISL_NAME,
.vendor = ISL_VENDOR,
.version = ISL_LIGHT_VERSION,
.max_range = {
.ival = ISL_LIGHT_MAX_RANGE_IVAL,
.fval = ISL_LIGHT_MAX_RANGE_MICRO,
},
.resolution = {
.ival = ISL_LIGHT_RESOLUTION_IVAL,
.fval = ISL_LIGHT_RESOLUTION_MICRO,
},
.milliamp = {
.ival = ISL_LIGHT_MILLIAMP_IVAL,
.fval = ISL_LIGHT_MILLIAMP_MICRO,
},
.delay_us_min = ISL_POLL_DLY_MS_MIN * 1000,
.delay_us_max = ISL_POLL_DLY_MS_MAX * 1000,
.flags = SENSOR_FLAG_ON_CHANGE_MODE,
.scale = {
.ival = ISL_LIGHT_SCALE_IVAL,
.fval = ISL_LIGHT_SCALE_MICRO,
},
.thresh_lo = ISL_LIGHT_THRESHOLD_DFLT,
.thresh_hi = ISL_LIGHT_THRESHOLD_DFLT,
},
{
.name = NVS_PROXIMITY_STRING,
.snsr_id = ISL_DEV_PROX,
.ch_n = 1,
.ch_sz = 4,
.part = ISL_NAME,
.vendor = ISL_VENDOR,
.version = ISL_PROX_VERSION,
.max_range = {
.ival = ISL_PROX_MAX_RANGE_IVAL,
.fval = ISL_PROX_MAX_RANGE_MICRO,
},
.resolution = {
.ival = ISL_PROX_RESOLUTION_IVAL,
.fval = ISL_PROX_RESOLUTION_MICRO,
},
.milliamp = {
.ival = ISL_PROX_MILLIAMP_IVAL,
.fval = ISL_PROX_MILLIAMP_MICRO,
},
.delay_us_min = ISL_POLL_DLY_MS_MIN * 1000,
.delay_us_max = ISL_POLL_DLY_MS_MAX * 1000,
.flags = SENSOR_FLAG_ON_CHANGE_MODE |
SENSOR_FLAG_WAKE_UP,
.scale = {
.ival = ISL_PROX_SCALE_IVAL,
.fval = ISL_PROX_SCALE_MICRO,
},
.thresh_lo = ISL_PROX_THRESHOLD_LO,
.thresh_hi = ISL_PROX_THRESHOLD_HI,
},
};
static int isl_of_dt(struct isl_state *st, struct device_node *dn)
{
unsigned int i;
int ret;
for (i = 0; i < ISL_DEV_N; i++)
memcpy(&st->cfg[i], &isl_cfg_dflt[i], sizeof(st->cfg[0]));
st->light.cfg = &st->cfg[ISL_DEV_LIGHT];
st->light.hw_mask = 0x0FFF;
st->light.nld_tbl = isl_nld_tbl;
st->prox.cfg = &st->cfg[ISL_DEV_PROX];
st->prox.hw_mask = 0x00FF;
/* default device specific parameters */
st->reg_cfg = ISL_CFG_DFLT;
st->reg_int = ISL_INT_DFLT;
/* device tree parameters */
if (dn) {
/* common NVS parameters */
for (i = 0; i < ISL_DEV_N; i++) {
ret = nvs_of_dt(dn, &st->cfg[i], NULL);
if (ret == -ENODEV)
/* the entire device has been disabled */
return -ENODEV;
}
/* device specific parameters */
of_property_read_u8(dn, "reg_configure", &st->reg_cfg);
of_property_read_u8(dn, "reg_interrupt", &st->reg_int);
}
/* this device supports these programmable parameters */
if (nvs_light_of_dt(&st->light, dn, NULL)) {
st->light.nld_i_lo = 0;
st->light.nld_i_hi = ARRAY_SIZE(isl_nld_tbl) - 1;
}
i = st->light.nld_i_lo;
st->cfg[ISL_DEV_LIGHT].resolution.ival =
isl_nld_tbl[i].resolution.ival;
st->cfg[ISL_DEV_LIGHT].resolution.fval =
isl_nld_tbl[i].resolution.fval;
i = st->light.nld_i_hi;
st->cfg[ISL_DEV_LIGHT].max_range.ival = isl_nld_tbl[i].max_range.ival;
st->cfg[ISL_DEV_LIGHT].max_range.fval = isl_nld_tbl[i].max_range.fval;
st->cfg[ISL_DEV_LIGHT].delay_us_min =
isl_nld_tbl[i].delay_min_ms * 1000;
return 0;
}
static int isl_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct isl_state *st;
unsigned long irqflags;
unsigned int n;
unsigned int i;
int ret;
dev_info(&client->dev, "%s\n", __func__);
st = devm_kzalloc(&client->dev, sizeof(*st), GFP_KERNEL);
if (st == NULL) {
dev_err(&client->dev, "%s devm_kzalloc ERR\n", __func__);
return -ENOMEM;
}
i2c_set_clientdata(client, st);
st->i2c = client;
ret = isl_of_dt(st, client->dev.of_node);
if (ret) {
if (ret == -ENODEV) {
dev_info(&client->dev, "%s DT disabled\n", __func__);
} else {
dev_err(&client->dev, "%s _of_dt ERR\n", __func__);
ret = -ENODEV;
}
goto isl_probe_exit;
}
isl_pm_init(st);
ret = isl_id_i2c(st, id->name);
if (ret) {
dev_err(&client->dev, "%s _id_i2c ERR\n", __func__);
ret = -ENODEV;
goto isl_probe_exit;
}
isl_pm(st, false);
isl_fn_dev.sts = &st->sts;
isl_fn_dev.errs = &st->errs;
st->nvs = nvs_iio();
if (st->nvs == NULL) {
ret = -ENODEV;
goto isl_probe_exit;
}
st->light.handler = st->nvs->handler;
st->prox.handler = st->nvs->handler;
if (client->irq < 1) {
/* disable WAKE_ON ability when no interrupt */
for (i = 0; i < ISL_DEV_N; i++)
st->cfg[i].flags &= ~SENSOR_FLAG_WAKE_UP;
}
n = 0;
for (i = 0; i < ISL_DEV_N; i++) {
ret = st->nvs->probe(&st->nvs_st[i], st, &client->dev,
&isl_fn_dev, &st->cfg[i]);
if (!ret)
n++;
}
if (!n) {
dev_err(&client->dev, "%s nvs_probe ERR\n", __func__);
ret = -ENODEV;
goto isl_probe_exit;
}
st->light.nvs_st = st->nvs_st[ISL_DEV_LIGHT];
st->prox.nvs_st = st->nvs_st[ISL_DEV_PROX];
st->wq = create_workqueue(ISL_NAME);
if (!st->wq) {
dev_err(&client->dev, "%s create_workqueue ERR\n", __func__);
ret = -ENOMEM;
goto isl_probe_exit;
}
INIT_WORK(&st->ws, isl_work);
if (client->irq) {
irqflags = IRQF_TRIGGER_FALLING | IRQF_ONESHOT;
for (i = 0; i < ISL_DEV_N; i++) {
if (st->cfg[i].snsr_id >= 0) {
if (st->cfg[i].flags & SENSOR_FLAG_WAKE_UP)
irqflags |= IRQF_NO_SUSPEND;
}
}
ret = request_threaded_irq(client->irq, NULL, isl_irq_thread,
irqflags, ISL_NAME, st);
if (ret) {
dev_err(&client->dev, "%s req_threaded_irq ERR %d\n",
__func__, ret);
ret = -ENOMEM;
goto isl_probe_exit;
}
}
dev_info(&client->dev, "%s done\n", __func__);
return 0;
isl_probe_exit:
isl_remove(client);
return ret;
}
static const struct i2c_device_id isl_i2c_device_id[] = {
{ ISL_NAME, 0 },
{ ISL_NAME_ISL29028, 0 },
{ ISL_NAME_ISL29029, 0 },
{}
};
MODULE_DEVICE_TABLE(i2c, isl_i2c_device_id);
static const struct of_device_id isl_of_match[] = {
{ .compatible = "intersil,isl2902x", },
{ .compatible = "intersil,isl29028", },
{ .compatible = "intersil,isl29029", },
{},
};
MODULE_DEVICE_TABLE(of, isl_of_match);
static struct i2c_driver isl_driver = {
.class = I2C_CLASS_HWMON,
.probe = isl_probe,
.remove = isl_remove,
.shutdown = isl_shutdown,
.driver = {
.name = ISL_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(isl_of_match),
.pm = &isl_pm_ops,
},
.id_table = isl_i2c_device_id,
};
module_i2c_driver(isl_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("ISL2902x driver");
MODULE_AUTHOR("NVIDIA Corporation");