Jetpack/kernel/nvidia/drivers/cpufreq/tegra_cpufreq.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

1443 lines
35 KiB
C

/*
* Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <asm/cputype.h>
#include <asm/smp_plat.h>
#include <asm/cpu.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/cpu_pm.h>
#include <linux/cpufreq.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <soc/tegra/tegra_bpmp.h>
#include <soc/tegra/bpmp_abi.h>
#include <linux/delay.h>
#include <linux/pstore.h>
#include <linux/ptrace.h>
#include <linux/platform/tegra/emc_bwmgr.h>
#include <linux/platform/tegra/tegra18_cpu_map.h>
#include <linux/tegra-mce.h>
#include <linux/tegra-cpu.h>
#include <linux/version.h>
#include <linux/pm_qos.h>
#include <linux/tegra-cpufreq.h>
#include <soc/tegra/chip-id.h>
#include "cpufreq_cpu_emc_table.h"
#define MAX_NDIV 512 /* No of NDIV */
#define MAX_VINDEX 80 /* No of voltage index */
/* cpufreq transisition latency */
#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000)
#define KHZ_TO_HZ 1000
#define REF_CLK_MHZ 408 /* 408 MHz */
#define US_DELAY 20
#define CPUFREQ_TBL_STEP_SIZE 4
#define CLUSTER_STR(cl) (cl == 1 ?\
"B_CLUSTER" : "M_CLUSTER")
#define LOOP_FOR_EACH_CLUSTER(cl) for (cl = 0; cl < MAX_CLUSTERS; cl++)
#define INDEX_STEP 2
/* EDVD register details */
#define EDVD_CL_NDIV_VHINT_OFFSET 0x20
#define EDVD_COREX_NDIV_VAL_SHIFT (0)
#define EDVD_COREX_NDIV_MASK (0x1ff << 0)
#define EDVD_COREX_VINDEX_VAL_SHIFT (16)
#define EDVD_COREX_VINDEX_MASK (0xff << 16)
/* ACTMON counter register details */
#define CORECLK_OFFSET (0x0)
#define REFCLK_OFFSET (0x4)
#define REG_OFFSET (0x4)
#define REF_CLOCK_MASK (0xfffffff)
#define coreclk_base(base, cpu) (base + CORECLK_OFFSET \
+ (REG_OFFSET * cpu))
#define refclk_base(base, cpu) (base + REFCLK_OFFSET \
+ (REG_OFFSET * cpu))
#define tcpufreq_readl(base, cpu) readl((void __iomem *) \
base + \
(REG_OFFSET * cpu))
#define tcpufreq_writel(val, base, cpu) writel(val, base + \
(REG_OFFSET * cpu))
#define logical_to_phys_map(cpu) (MPIDR_AFFINITY_LEVEL \
(cpu_logical_map(cpu), 0))
#define logical_to_phys_cluster(cl) (cl == 1 ? \
ARM_CPU_IMP_ARM : \
ARM_CPU_IMP_NVIDIA)
#define is_cluster_present(cl) (cl >= MAX_CLUSTERS ? \
false : \
tfreq_data.pcluster[cl].cluster_present)
#define M_CLUSTER 0
#define B_CLUSTER 1
#define MAX_CLUSTERS 2
#define M_CL_OFFSET (SZ_64K * 7)
#define B_CL_OFFSET (SZ_64K * 6)
/**
* Cpu side dvfs table
* This table needs to be constructed at boot up time
* BPMP will provide NDIV and Vidx tuple.
* BPMP will also provide per custer Pdiv, Mdiv, ref_clk.
* freq = (ndiv * refclk) / (pdiv * mdiv)
*/
struct cpu_vhint_table {
struct cpu_vhint_data *lut; /* virtual address of NDIV[VINDEX] */
dma_addr_t phys;
uint32_t ref_clk_hz;
uint16_t pdiv; /* post divider */
uint16_t mdiv; /* input divider */
uint16_t vfloor;
uint16_t vceil;
uint16_t ndiv_max;
uint16_t ndiv_min;
uint16_t vindex_mult;
uint16_t vindex_div;
uint8_t *vindx;
};
struct cc3_params {
u32 ndiv;
u32 vindex;
u32 freq;
u8 enable;
};
struct per_cluster_data {
struct cpufreq_frequency_table *clft;
void __iomem *edvd_pub;
struct cpu_vhint_table dvfs_tbl;
struct tegra_bwmgr_client *bwmgr;
struct cpumask cpu_mask;
struct cc3_params cc3;
bool cluster_present;
};
struct tegra_cpufreq_data {
struct per_cluster_data pcluster[MAX_CLUSTERS];
struct mutex mlock; /* lock protecting below params */
uint32_t freq_compute_delay; /* delay in reading clock counters */
uint32_t cpu_freq[CONFIG_NR_CPUS];
uint32_t last_hint[CONFIG_NR_CPUS];
void *__iomem *regs;
};
static struct tegra_cpufreq_data tfreq_data;
static struct freq_attr *tegra_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
NULL,
};
static DEFINE_PER_CPU(struct mutex, pcpu_mlock);
static DEFINE_PER_CPU(spinlock_t, pcpu_slock);
static bool tegra_cpufreq_hv_mode;
struct tegra_cpu_ctr {
uint32_t cpu;
uint32_t coreclk_cnt, last_coreclk_cnt;
uint32_t refclk_cnt, last_refclk_cnt;
};
static void tegra_read_counters(void *arg)
{
struct cpuinfo_arm64 *cpuinfo;
struct tegra_cpu_ctr *c = arg;
u32 mpidr, midr;
mpidr = cpu_logical_map(c->cpu);
cpuinfo = &per_cpu(cpu_data, c->cpu);
midr = cpuinfo->reg_midr;
/*
* ref_clk_counter(28 bit counter) runs from constant clk,
* pll_p(408MHz).
* It will take = 2 ^ 28 / 408 MHz to overflow ref clk counter
* = 65793 usec = 657 msec to overflow
*
* Like wise core_clk_counter(32 bit counter) runs from
* crab_clk(ctu_clk). ctu_clk, runs at full freq of cluster,
* Assuming max cluster clock ~2000MHz
* It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
* = 2 sec to overflow
*
* Unsigned subtraction of core clock counter(32 bit) and ref clk
* counter(28 bit) with modulo of 2^28 avoids single overflow.
*/
if (tegra_get_clk_counter(mpidr, midr, &c->last_coreclk_cnt,
&c->last_refclk_cnt))
pr_err("Error in reading cpu clk counters before delay %u: usec\n",
tfreq_data.freq_compute_delay);
udelay(tfreq_data.freq_compute_delay);
if (tegra_get_clk_counter(mpidr, midr, &c->coreclk_cnt,
&c->refclk_cnt))
pr_err("Error in reading cpu clk counters after delay %u: usec\n",
tfreq_data.freq_compute_delay);
}
/**
* Return instantaneous cpu speed
* Instantaneous freq is calculated as -
* -Takes sample on every query of getting the freq.
* - Read core and ref clock counters;
* - Delay for X us
* - Read above cycle counters again
* - Calculates freq by subtracting current and previous counters
* divided by the delay time or eqv. of ref_clk_counter in delta time
* - Return Kcycles/second, freq in KHz
*
* - delta time period = x sec
* = delta ref_clk_counter / (408 * 10^6) sec
* freq in Hz = cycles/sec
* = (delta cycles / x sec
* = (delta cycles * 408 * 10^6) / delta ref_clk_counter
* in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
*
* @cpu - logical cpu whose freq to be updated
* Returns freq in KHz on success, 0 if cpu is offline
*/
static unsigned int tegra186_get_speed(uint32_t cpu)
{
uint32_t delta_ccnt = 0;
uint32_t delta_refcnt = 0;
unsigned long rate_mhz = 0;
struct tegra_cpu_ctr c;
c.cpu = cpu;
if (!smp_call_function_single(cpu, tegra_read_counters, &c, 1)) {
delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
if (!delta_ccnt)
goto err_out;
/* ref clock is 28 bits */
delta_refcnt = (c.refclk_cnt - c.last_refclk_cnt) % (1 << 28);
if (!delta_refcnt) {
pr_err("Warning: %d is idle, delta_refcnt: 0\n", cpu);
goto err_out;
}
rate_mhz = ((unsigned long) delta_ccnt * REF_CLK_MHZ)
/ delta_refcnt;
}
err_out:
return (unsigned int) (rate_mhz * 1000); /* in KHz */
}
static struct cpu_emc_mapping dflt_t186_cpu_emc_mapping[] = {
{ 450000, 408000},
{ 800000, 660000},
{1400000, UINT_MAX},
{}, /* termination entry */
};
static struct cpu_emc_mapping *cpu_emc_mapping_dt;
/**
* get_cluster_freq - returns max freq among all the cpus in a cluster.
*
* @cl - cluster whose freq to be returned
* @freq - cpu freq in kHz
* Returns:
* cluster freq as max freq among all the cpu's freq in
* a cluster
*/
static uint32_t get_cluster_freq(struct cpufreq_policy *policy)
{
uint32_t i, cpu_freq;
struct cpumask mask;
cpumask_and(&mask, policy->cpus, cpu_online_mask);
cpu_freq = policy->cur;
for_each_cpu(i, &mask) {
cpu_freq = max(cpu_freq, tfreq_data.cpu_freq[i]);
}
return cpu_freq;
}
/* Set emc clock by referring cpu_to_emc freq mapping */
static void set_cpufreq_to_emcfreq(struct cpufreq_policy *policy)
{
unsigned long emc_freq, freq_khz;
uint32_t cluster_freq;
int cl;
struct cpu_emc_mapping *mapping = cpu_emc_mapping_dt ?
cpu_emc_mapping_dt : dflt_t186_cpu_emc_mapping;
cluster_freq = get_cluster_freq(policy);
freq_khz = tegra_cpu_to_emc_freq(cluster_freq, mapping);
if (freq_khz == UINT_MAX)
emc_freq = tegra_bwmgr_get_max_emc_rate();
else
emc_freq = freq_khz * KHZ_TO_HZ;
cl = tegra18_logical_to_cluster(policy->cpu);
tegra_bwmgr_set_emc(tfreq_data.pcluster[cl].bwmgr, emc_freq,
TEGRA_BWMGR_SET_EMC_FLOOR);
pr_debug("cpu: %d, cluster %s, emc freq(KHz): %lu cluster_freq(kHz): %u\n",
policy->cpu, CLUSTER_STR(cl), emc_freq / 1000, cluster_freq);
}
static struct cpufreq_frequency_table *get_freqtable(uint8_t cpu)
{
int cur_cl = tegra18_logical_to_cluster(cpu);
return tfreq_data.pcluster[cur_cl].clft;
}
/**
* tegra_update_cpu_speed - update cpu freq
* @rate - in kHz
* @cpu - cpu whose freq to be updated
* Returns 0 on success, -ve on failure
*/
static void tegra_update_cpu_speed(uint32_t rate, uint8_t cpu)
{
struct cpu_vhint_table *vhtbl;
uint32_t val = 0, phy_cpu;
int cur_cl;
uint16_t ndiv;
int8_t vindx;
spinlock_t *slock = &per_cpu(pcpu_slock, cpu);
cur_cl = tegra18_logical_to_cluster(cpu);
vhtbl = &tfreq_data.pcluster[cur_cl].dvfs_tbl;
/*
* LUT for this cluster is not present.
* Could be single cluster or n cluster chip but for <cur_cl>,
* current cluster LUT is not sent by BPMP.
*/
if (!vhtbl->lut)
return;
rate *= vhtbl->pdiv * vhtbl->mdiv;
ndiv = (rate * KHZ_TO_HZ) / vhtbl->ref_clk_hz;
if ((rate * KHZ_TO_HZ) % vhtbl->ref_clk_hz)
ndiv++;
if (ndiv < vhtbl->ndiv_min)
ndiv = vhtbl->ndiv_min;
if (ndiv > vhtbl->ndiv_max)
ndiv = vhtbl->ndiv_max;
val |= (ndiv << EDVD_COREX_NDIV_VAL_SHIFT);
vindx = vhtbl->vindx[ndiv];
if (vindx < vhtbl->vfloor)
vindx = vhtbl->vfloor;
else if (vindx > vhtbl->vceil)
vindx = vhtbl->vceil;
if (vhtbl->vindex_div > 0)
vindx = vhtbl->vindex_mult * vindx / vhtbl->vindex_div;
val |= (vindx << EDVD_COREX_VINDEX_VAL_SHIFT);
phy_cpu = logical_to_phys_map(cpu);
spin_lock(slock);
tcpufreq_writel(val, tfreq_data.pcluster[cur_cl].edvd_pub +
EDVD_CL_NDIV_VHINT_OFFSET, phy_cpu);
tfreq_data.last_hint[cpu] = val;
spin_unlock(slock);
}
/**
* tegra186_cpufreq_set_target - Request freq to be set for policy->cpu
* @policy - cpufreq policy per cpu
* @index - freq table index
* Returns 0 on success, -ve on failure
*/
static int tegra186_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_freqs freqs;
struct mutex *mlock;
uint32_t tgt_freq;
int cpu, ret = 0;
if (is_tegra_hypervisor_mode() && hv_is_set_speed_supported() == false) {
pr_warn("cpufreq : Setting speed functionality not present\n");
return -EINVAL;
}
if (!policy || (!cpu_online(policy->cpu)))
return -EINVAL;
mlock = &per_cpu(pcpu_mlock, policy->cpu);
mutex_lock(mlock);
tgt_freq = policy->freq_table[index].frequency;
freqs.old = tfreq_data.cpu_freq[policy->cpu];
if (policy->cur == tgt_freq)
goto out;
freqs.new = tgt_freq;
cpufreq_freq_transition_begin(policy, &freqs);
if (freqs.old != tgt_freq) {
/*
* In hypervisor case cpufreq server will take care of
* updating frequency for each cpu in a cluster. So no
* need to run through the loop.
*/
if (tegra_cpufreq_hv_mode)
tegra_update_cpu_speed_hv(tgt_freq, policy->cpu);
for_each_cpu(cpu, policy->cpus) {
if (!tegra_cpufreq_hv_mode)
tegra_update_cpu_speed(tgt_freq, cpu);
/*
* Update the freq data for each cpu regardless
* hypervisor or native mode.
*/
tfreq_data.cpu_freq[cpu] = tgt_freq;
}
}
policy->cur = tgt_freq;
freqs.new = policy->cur;
if (freqs.old != tgt_freq)
set_cpufreq_to_emcfreq(policy);
cpufreq_freq_transition_end(policy, &freqs, ret);
out:
pr_debug("cpu: %d, oldfreq(kHz): %d, req freq(kHz): %d final freq(kHz): %d tgt_index %u\n",
policy->cpu, freqs.old, tgt_freq, policy->cur, index);
mutex_unlock(mlock);
return ret;
}
static void __tegra_mce_cc3_ctrl(void *data)
{
struct cc3_params *param = (struct cc3_params *)data;
tegra_mce_cc3_ctrl(param->ndiv, param->vindex, param->enable);
}
static inline u16 map_ndiv_to_vindex(struct cpu_vhint_table *vhtbl, u16 ndiv)
{
struct cpu_vhint_data *lut = vhtbl->lut;
if (ndiv == lut->ndiv_min)
return lut->vfloor;
else
return vhtbl->vindx[ndiv];
}
static inline u16 clamp_ndiv(struct cpu_vhint_table *vhtbl, u16 ndiv)
{
u16 min = vhtbl->lut->ndiv_min;
u16 max = vhtbl->lut->ndiv_max;
if (!ndiv || (ndiv < min))
ndiv = min;
if (ndiv > max)
ndiv = max;
return ndiv;
}
static inline u16 map_freq_to_ndiv(struct cpu_vhint_table *vhtbl,
u32 freq)
{
struct cpu_vhint_data *lut = vhtbl->lut;
return (freq * 1000 * lut->pdiv * lut->mdiv) / lut->ref_clk_hz;
}
static void enable_cc3(struct device_node *dn)
{
struct cpu_vhint_table *vhtbl;
struct cc3_params *cc3;
u32 enb, freq = 0, idx = 0;
u16 ndiv;
int cl;
int ret = 0;
LOOP_FOR_EACH_CLUSTER(cl) {
vhtbl = &tfreq_data.pcluster[cl].dvfs_tbl;
cc3 = &tfreq_data.pcluster[cl].cc3;
if (!vhtbl->lut)
goto idx_inc;
ret = of_property_read_u32_index(dn, "nvidia,enable-autocc3",
idx + 1, &enb);
if (!enb || ret)
goto idx_inc;
ret = of_property_read_u32_index(dn, "nvidia,autocc3-freq",
idx + 1, &freq);
if (ret)
freq = 0;
ndiv = map_freq_to_ndiv(vhtbl, freq);
ndiv = clamp_ndiv(vhtbl, ndiv);
cc3->enable = 1;
cc3->ndiv = ndiv;
cc3->vindex = map_ndiv_to_vindex(vhtbl, ndiv);
ret = smp_call_function_any(&tfreq_data.pcluster[cl].cpu_mask,
__tegra_mce_cc3_ctrl,
cc3, 1);
WARN_ON_ONCE(ret);
idx_inc:
idx += INDEX_STEP;
}
}
#ifdef CONFIG_DEBUG_FS
#define RW_MODE (S_IWUSR | S_IRUGO)
#define RO_MODE (S_IRUGO)
static int get_delay(void *data, u64 *val)
{
mutex_lock(&tfreq_data.mlock);
*val = tfreq_data.freq_compute_delay;
mutex_unlock(&tfreq_data.mlock);
return 0;
}
static int set_delay(void *data, u64 val)
{
uint32_t udelay = val;
mutex_lock(&tfreq_data.mlock);
if (udelay)
tfreq_data.freq_compute_delay = udelay;
mutex_unlock(&tfreq_data.mlock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(freq_compute_fops, get_delay, set_delay,
"%llu\n");
static int freq_get(void *data, u64 *val)
{
uint64_t cpu = (uint64_t)data;
struct mutex *mlock;
mlock = &per_cpu(pcpu_mlock, cpu);
mutex_lock(mlock);
*val = tegra186_get_speed(cpu);
mutex_unlock(mlock);
return 0;
}
/* Set freq in Khz for a cpu */
static int freq_set(void *data, u64 val)
{
uint64_t cpu = (uint64_t)data;
unsigned int freq = val;
struct mutex *mlock;
mlock = &per_cpu(pcpu_mlock, cpu);
mutex_lock(mlock);
if (val) {
if (tegra_cpufreq_hv_mode)
tegra_update_cpu_speed_hv(freq, cpu);
else
tegra_update_cpu_speed(freq, cpu);
}
mutex_unlock(mlock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(freq_fops, freq_get, freq_set, "%llu\n");
/* Set ndiv / vindex hint for a cpu */
static int set_hint(void *data, u64 val)
{
uint64_t cpu = (uint64_t)data;
int cur_cl;
uint32_t hint = val;
if (!val)
return 0;
/* Take hotplug lock before taking tegra cpufreq lock */
get_online_cpus();
if (cpu_online(cpu)) {
spinlock_t *slock = &per_cpu(pcpu_slock, cpu);
cur_cl = tegra18_logical_to_cluster(cpu);
cpu = logical_to_phys_map(cpu);
spin_lock(slock);
tcpufreq_writel(hint, tfreq_data.pcluster[cur_cl].edvd_pub +
EDVD_CL_NDIV_VHINT_OFFSET, cpu);
tfreq_data.last_hint[cpu] = hint;
spin_unlock(slock);
}
put_online_cpus();
return 0;
}
/* get ndiv / vindex hint for a cpu */
static int get_hint(void *data, u64 *hint)
{
uint64_t cpu = (uint64_t)data;
int cur_cl;
*hint = 0;
/* Take hotplug lock before taking tegra cpufreq lock */
get_online_cpus();
if (cpu_online(cpu)) {
cur_cl = tegra18_logical_to_cluster(cpu);
cpu = logical_to_phys_map(cpu);
pstore_rtrace_set_bypass(1);
*hint = tcpufreq_readl(tfreq_data.pcluster[cur_cl].edvd_pub +
EDVD_CL_NDIV_VHINT_OFFSET, cpu);
pstore_rtrace_set_bypass(0);
}
put_online_cpus();
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(ndiv_vindex_fops, get_hint, set_hint, "%08llx\n");
static void dump_lut(struct seq_file *s, struct cpu_vhint_table *vht)
{
uint16_t i;
seq_printf(s, "reference clk(hz): %u\n", vht->ref_clk_hz);
seq_printf(s, "pdiv: %u\n", vht->pdiv);
seq_printf(s, "mdiv: %u\n", vht->mdiv);
seq_printf(s, "vfloor: %u\n", vht->vfloor);
seq_printf(s, "vceil: %u\n", vht->vceil);
seq_printf(s, "ndiv_max: %u\n", vht->ndiv_max);
seq_printf(s, "ndiv_min: %u\n", vht->ndiv_min);
seq_printf(s, "vindex_mult: %u\n", vht->vindex_mult);
seq_printf(s, "vindex_div: %u\n", vht->vindex_div);
for (i = vht->ndiv_min; i <= vht->ndiv_max; i++)
seq_printf(s, "vindex[ndiv==%u]: %u\n", i, vht->vindx[i]);
seq_puts(s, "\n");
}
static int show_bpmp_to_cpu_lut(struct seq_file *s, void *data)
{
struct cpu_vhint_table *vht;
int cl;
LOOP_FOR_EACH_CLUSTER(cl) {
vht = &tfreq_data.pcluster[cl].dvfs_tbl;
/*
* LUT for this cluster is not present.
* Could be single cluster or n cluster chip but for <cl>,
* current cluster, LUT is not sent by BPMP.
*/
if (!vht->lut)
continue;
seq_printf(s, "%s:\n", CLUSTER_STR(cl));
dump_lut(s, vht);
}
return 0;
}
static int stats_open(struct inode *inode, struct file *file)
{
return single_open(file, show_bpmp_to_cpu_lut, inode->i_private);
}
static const struct file_operations lut_fops = {
.open = stats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int get_pcluster_cc3(void *data, u64 *val)
{
long cl = (long)data;
mutex_lock(&tfreq_data.mlock);
*val = tfreq_data.pcluster[cl].cc3.enable;
mutex_unlock(&tfreq_data.mlock);
return 0;
}
static int set_pcluster_cc3(void *data, u64 val)
{
long cl = (long)data;
int wait = 1;
int ret = 0;
mutex_lock(&tfreq_data.mlock);
if (tfreq_data.pcluster[cl].cc3.enable ^ (bool) val) {
tfreq_data.pcluster[cl].cc3.enable = (bool) val;
ret = smp_call_function_any(&tfreq_data.pcluster[cl].cpu_mask,
__tegra_mce_cc3_ctrl,
&tfreq_data.pcluster[cl].cc3, wait);
}
mutex_unlock(&tfreq_data.mlock);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(pcl_cc3_ops, get_pcluster_cc3,
set_pcluster_cc3, "%llu\n");
static int get_ndiv(void *data, u64 *val)
{
long cl = (long)data;
mutex_lock(&tfreq_data.mlock);
*val = tfreq_data.pcluster[cl].cc3.ndiv;
mutex_unlock(&tfreq_data.mlock);
return 0;
}
static int set_ndiv(void *data, u64 val)
{
long cl = (long)data;
int wait = 1;
int ret = 0;
mutex_lock(&tfreq_data.mlock);
if (tfreq_data.pcluster[cl].cc3.ndiv != (u32) val) {
tfreq_data.pcluster[cl].cc3.ndiv = (u32) val;
ret = smp_call_function_any(&tfreq_data.pcluster[cl].cpu_mask,
__tegra_mce_cc3_ctrl,
&tfreq_data.pcluster[cl].cc3, wait);
}
mutex_unlock(&tfreq_data.mlock);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(ndiv_ops, get_ndiv, set_ndiv,
"%llu\n");
static int get_vindex(void *data, u64 *val)
{
long cl = (long)data;
mutex_lock(&tfreq_data.mlock);
*val = tfreq_data.pcluster[cl].cc3.vindex;
mutex_unlock(&tfreq_data.mlock);
return 0;
}
static int set_vindex(void *data, u64 val)
{
long cl = (long)data;
int wait = 1;
int ret = 0;
mutex_lock(&tfreq_data.mlock);
if (tfreq_data.pcluster[cl].cc3.vindex != (u32) val) {
tfreq_data.pcluster[cl].cc3.vindex = (u32) val;
ret = smp_call_function_any(&tfreq_data.pcluster[cl].cpu_mask,
__tegra_mce_cc3_ctrl,
&tfreq_data.pcluster[cl].cc3, wait);
}
mutex_unlock(&tfreq_data.mlock);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(vidx_ops, get_vindex, set_vindex,
"%llu\n");
static struct dentry *tegra_cpufreq_debugfs_root;
static int __init cc3_debug_init(void)
{
struct dentry *dir;
long int cl;
uint8_t buff[15];
LOOP_FOR_EACH_CLUSTER(cl) {
snprintf(buff, sizeof(buff), CLUSTER_STR(cl));
dir = debugfs_create_dir(buff, tegra_cpufreq_debugfs_root);
if (!dir)
goto err_out;
snprintf(buff, sizeof(buff), "cc3");
dir = debugfs_create_dir(buff, dir);
if (!dir)
goto err_out;
if (!debugfs_create_file("enable", RW_MODE, dir, (void *)cl,
&pcl_cc3_ops))
goto err_out;
if (!debugfs_create_file("ndiv", RW_MODE, dir, (void *)cl,
&ndiv_ops))
goto err_out;
if (!debugfs_create_file("vindex", RW_MODE, dir, (void *)cl,
&vidx_ops))
goto err_out;
}
return 0;
err_out:
return -EINVAL;
}
static int __init tegra_cpufreq_debug_init(void)
{
struct dentry *dir;
uint8_t buff[15];
uint64_t cpu;
tegra_cpufreq_debugfs_root = debugfs_create_dir("tegra_cpufreq", NULL);
if (!tegra_cpufreq_debugfs_root)
return -ENOMEM;
if (!debugfs_create_file("bpmp_cpu_vhint_table", RO_MODE,
tegra_cpufreq_debugfs_root,
NULL,
&lut_fops))
goto err_out;
if (!debugfs_create_file("freq_compute_delay", RW_MODE,
tegra_cpufreq_debugfs_root,
NULL,
&freq_compute_fops))
goto err_out;
if (cc3_debug_init())
goto err_out;
if (!tegra_debugfs_create_cpu_emc_map(tegra_cpufreq_debugfs_root,
cpu_emc_mapping_dt ? cpu_emc_mapping_dt :
dflt_t186_cpu_emc_mapping))
goto err_out;
for_each_possible_cpu(cpu) {
snprintf(buff, sizeof(buff), "cpu%llu", cpu);
dir = debugfs_create_dir(buff, tegra_cpufreq_debugfs_root);
if (!dir)
goto err_out;
if (!debugfs_create_file("freq", RW_MODE, dir, (void *)cpu,
&freq_fops))
goto err_out;
if (!debugfs_create_file("ndiv_vindex_hint", RW_MODE, dir,
(void *)cpu, &ndiv_vindex_fops))
goto err_out;
}
return 0;
err_out:
debugfs_remove_recursive(tegra_cpufreq_debugfs_root);
return -ENOMEM;
}
static void tegra_cpufreq_debug_exit(void)
{
debugfs_remove_recursive(tegra_cpufreq_debugfs_root);
}
#endif
static int tegra186_cpufreq_init(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *ftbl;
struct mutex *mlock;
if (policy->cpu >= CONFIG_NR_CPUS)
return -EINVAL;
mlock = &per_cpu(pcpu_mlock, policy->cpu);
mutex_lock(mlock);
ftbl = get_freqtable(policy->cpu);
cpufreq_table_validate_and_show(policy, ftbl);
policy->cur = tegra186_get_speed(policy->cpu);
tfreq_data.cpu_freq[policy->cpu] = policy->cur;
set_cpufreq_to_emcfreq(policy);
policy->cpuinfo.transition_latency =
TEGRA_CPUFREQ_TRANSITION_LATENCY;
cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
mutex_unlock(mlock);
return 0;
}
static int tegra186_cpufreq_exit(struct cpufreq_policy *policy)
{
struct mutex *mlock;
int cl;
mlock = &per_cpu(pcpu_mlock, policy->cpu);
mutex_lock(mlock);
cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
cl = tegra18_logical_to_cluster(policy->cpu);
if (tfreq_data.pcluster[cl].bwmgr)
tegra_bwmgr_set_emc(tfreq_data.pcluster[cl].bwmgr, 0,
TEGRA_BWMGR_SET_EMC_FLOOR);
mutex_unlock(mlock);
return 0;
}
static struct cpufreq_driver tegra_cpufreq_driver = {
.name = "tegra_cpufreq",
.flags = CPUFREQ_ASYNC_NOTIFICATION | CPUFREQ_STICKY |
CPUFREQ_CONST_LOOPS |
CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = tegra186_cpufreq_set_target,
.get = tegra186_get_speed,
.init = tegra186_cpufreq_init,
.exit = tegra186_cpufreq_exit,
.attr = tegra_cpufreq_attr,
};
static int cluster_freq_notify(struct notifier_block *b,
unsigned long l, void *v)
{
struct cpufreq_policy *policy;
struct cpumask updated_cpus;
int cpu, ret = 0;
cpumask_clear(&updated_cpus);
for_each_online_cpu(cpu) {
/* Skip CPUs already covered by a previous update */
if (cpumask_test_cpu(cpu, &updated_cpus))
continue;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
cpufreq_update_policy(policy->cpu);
cpumask_or(&updated_cpus, &updated_cpus, policy->cpus);
cpufreq_cpu_put(policy);
}
return notifier_from_errno(ret);
}
/* Clipping policy object's min/max to pmqos limits */
static int tegra_boundaries_policy_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
struct cpufreq_policy *policy = data;
unsigned int qmin = 0;
unsigned int qmax = UINT_MAX;
if (event != CPUFREQ_ADJUST)
return NOTIFY_OK;
qmin = pm_qos_read_min_bound(PM_QOS_CPU_FREQ_BOUNDS);
qmax = pm_qos_read_max_bound(PM_QOS_CPU_FREQ_BOUNDS);
/*
* Clamp pmqos to stay within sysfs upper boundary
* but allow pmqos cap override sysfs min freq settings
*/
qmin = min(qmin, policy->user_policy.max);
qmax = min(qmax, policy->user_policy.max);
/* Apply pmqos limits on top of existing limits */
policy->min = max(policy->min, qmin);
policy->max = min(policy->max, qmax);
if (policy->min > policy->max)
policy->min = policy->max;
return NOTIFY_OK;
}
#ifdef CONFIG_CPU_PM
static int tegra_cpu_pm_notifier(struct notifier_block *nb,
unsigned long cmd, void *v)
{
unsigned int cpu = smp_processor_id();
switch (cmd) {
case CPU_PM_EXIT:
/*
* Only Denver can enter CC6 and lose the subsequent
* VF request at runtime. So no need to do this for
* ARM cores for now.
*/
if (!tegra18_is_cpu_denver(cpu))
break;
if (tfreq_data.last_hint[cpu]) {
int cur_cl, phy_cpu;
spinlock_t *slock = &per_cpu(pcpu_slock, cpu);
cur_cl = tegra18_logical_to_cluster(cpu);
phy_cpu = logical_to_phys_map(cpu);
if (spin_trylock(slock)) {
tcpufreq_writel(tfreq_data.last_hint[cpu],
tfreq_data.pcluster[cur_cl].edvd_pub +
EDVD_CL_NDIV_VHINT_OFFSET, phy_cpu);
spin_unlock(slock);
}
}
break;
}
return NOTIFY_OK;
}
#endif
static struct notifier_block cluster_freq_nb = {
.notifier_call = cluster_freq_notify,
};
static struct notifier_block tegra_boundaries_cpufreq_nb = {
.notifier_call = tegra_boundaries_policy_notifier,
};
#ifdef CONFIG_CPU_PM
static struct notifier_block tegra_cpu_pm_nb = {
.notifier_call = tegra_cpu_pm_notifier,
};
#endif
static void pm_qos_register_notifier(void)
{
pm_qos_add_min_notifier(PM_QOS_CPU_FREQ_BOUNDS,
&cluster_freq_nb);
pm_qos_add_max_notifier(PM_QOS_CPU_FREQ_BOUNDS,
&cluster_freq_nb);
}
/* Free lut space shared beteen CPU and BPMP */
static void __init free_shared_lut(void)
{
uint16_t size = sizeof(struct cpu_vhint_data);
struct cpu_vhint_table *vhtbl;
int cl;
LOOP_FOR_EACH_CLUSTER(cl) {
/* Free lut space shared by BPMP */
vhtbl = &tfreq_data.pcluster[cl].dvfs_tbl;
if (vhtbl->lut && vhtbl->phys)
tegra_bpmp_free_coherent(size, vhtbl->lut,
vhtbl->phys);
}
}
static void free_resources(struct device *dev)
{
int cl;
/* unmap iova space */
if (tfreq_data.regs)
devm_iounmap(dev, tfreq_data.regs);
LOOP_FOR_EACH_CLUSTER(cl) {
/* free ndiv_to_vindex mem */
kfree(tfreq_data.pcluster[cl].dvfs_tbl.vindx);
/* free table */
kfree(tfreq_data.pcluster[cl].clft);
/* unregister from emc bw manager */
tegra_bwmgr_unregister(tfreq_data.pcluster[cl].bwmgr);
}
/* kfree handles NULL just well */
kfree(cpu_emc_mapping_dt);
cpu_emc_mapping_dt = NULL;
}
static int __init init_freqtbls(struct device_node *dn)
{
u16 freq_table_step_size = CPUFREQ_TBL_STEP_SIZE;
u16 dt_freq_table_step_size = 0;
struct cpufreq_frequency_table *ftbl;
struct cpu_vhint_table *vhtbl;
u16 ndiv, max_freq_steps, delta_ndiv;
int cl;
int ret = 0, index;
if (!of_property_read_u16(dn, "freq_table_step_size",
&dt_freq_table_step_size)) {
freq_table_step_size = dt_freq_table_step_size;
if (!freq_table_step_size) {
freq_table_step_size = CPUFREQ_TBL_STEP_SIZE;
pr_info("Invalid cpu freq_table_step_size:%d setting to default value:%d\n",
dt_freq_table_step_size, freq_table_step_size);
}
}
pr_debug("CPU frequency table step size: %d\n", freq_table_step_size);
LOOP_FOR_EACH_CLUSTER(cl) {
vhtbl = &tfreq_data.pcluster[cl].dvfs_tbl;
/*
* LUT for this cluster is not present.
* Could be single cluster or n cluster chip but for <cl>,
* current cluster, LUT is not sent by BPMP.
*/
if (!vhtbl->lut) {
pr_warn("%s: cluster %d has no LUT\n",
__func__, cl);
continue;
}
delta_ndiv = vhtbl->ndiv_max - vhtbl->ndiv_min;
if (unlikely(delta_ndiv == 0))
max_freq_steps = 1;
else {
/* We store both ndiv_min and ndiv_max hence the +1 */
max_freq_steps = delta_ndiv / freq_table_step_size + 1;
}
max_freq_steps += (delta_ndiv % freq_table_step_size) ? 1 : 0;
/* Allocate memory 1 + max_freq_steps to write END_OF_TABLE */
ftbl = kzalloc(sizeof(struct cpufreq_frequency_table) *
(max_freq_steps + 1), GFP_KERNEL);
if (!ftbl) {
ret = -ENOMEM;
while (cl--)
kfree(tfreq_data.pcluster[cl].clft);
goto err_out;
}
for (index = 0, ndiv = vhtbl->ndiv_min;
ndiv < vhtbl->ndiv_max;
index++, ndiv += freq_table_step_size)
ftbl[index].frequency = (unsigned long)
(vhtbl->ref_clk_hz * ndiv)
/ (vhtbl->pdiv * vhtbl->mdiv * 1000);
ftbl[index++].frequency = (unsigned long)
(vhtbl->ndiv_max * vhtbl->ref_clk_hz) /
(vhtbl->pdiv * vhtbl->mdiv * 1000);
ftbl[index].frequency = CPUFREQ_TABLE_END;
tfreq_data.pcluster[cl].clft = ftbl;
}
err_out:
return ret;
}
static int __init create_ndiv_to_vindex_table(void)
{
struct cpu_vhint_table *vhtbl;
struct cpu_vhint_data *lut;
uint16_t mid_ndiv, i;
int cl;
uint8_t vindx;
int ret = 0;
LOOP_FOR_EACH_CLUSTER(cl) {
vhtbl = &tfreq_data.pcluster[cl].dvfs_tbl;
lut = vhtbl->lut;
/*
* LUT for this cluster is not present.
* Could be single cluster or n cluster chip but for <cl>,
* current cluster, LUT is not sent by BPMP.
*/
if (!lut) {
pr_warn("%s: cluster %d has no LUT\n",
__func__, cl);
continue;
}
vhtbl->vindx = kzalloc(sizeof(uint8_t) * MAX_NDIV,
GFP_KERNEL);
if (!vhtbl->vindx) {
ret = -ENOMEM;
while (cl--)
kfree(tfreq_data.pcluster[cl].dvfs_tbl.vindx);
goto err_out;
}
i = 0;
vhtbl->vfloor = lut->vfloor;
vhtbl->vceil = lut->vceil;
for (vindx = vhtbl->vfloor; vindx <= vhtbl->vceil; ++vindx) {
mid_ndiv = lut->ndiv[vindx];
for (; ((mid_ndiv < MAX_NDIV) && (i <= mid_ndiv)); i++)
vhtbl->vindx[i] = vindx;
}
/* Fill remaining vindex table by last vindex value */
for (; i < MAX_NDIV; i++)
vhtbl->vindx[i] = vhtbl->vceil;
vhtbl->ref_clk_hz = lut->ref_clk_hz;
vhtbl->pdiv = lut->pdiv;
vhtbl->mdiv = lut->mdiv;
vhtbl->ndiv_min = lut->ndiv_min;
vhtbl->ndiv_max = lut->ndiv_max;
vhtbl->vindex_mult = lut->vindex_mult;
vhtbl->vindex_div = lut->vindex_div;
}
err_out:
return ret;
}
static int __init get_lut_from_bpmp(void)
{
const size_t size = sizeof(struct cpu_vhint_data);
struct mrq_cpu_vhint_request md;
struct cpu_vhint_table *vhtbl;
struct cpu_vhint_data *virt;
dma_addr_t phys;
uint32_t cl;
int ret = 0;
bool ok = false;
LOOP_FOR_EACH_CLUSTER(cl) {
vhtbl = &tfreq_data.pcluster[cl].dvfs_tbl;
if (is_cluster_present(cl)) {
virt = (struct cpu_vhint_data *)
tegra_bpmp_alloc_coherent(size,
&phys, GFP_KERNEL);
if (!virt) {
ret = -ENOMEM;
while (cl--) {
vhtbl =
&tfreq_data.pcluster[cl].dvfs_tbl;
tegra_bpmp_free_coherent(size,
vhtbl->lut,
vhtbl->phys);
}
ok = false;
goto err_out;
}
vhtbl->lut = virt;
vhtbl->phys = phys;
md.addr = (uint32_t)phys;
md.cluster_id = cl;
ret = tegra_bpmp_send_receive(MRQ_CPU_VHINT, &md,
sizeof(struct mrq_cpu_vhint_request),
NULL, 0);
if (ret) {
pr_err("%s: cluster %d: vhint query failed: %d\n",
__func__, cl, ret);
tegra_bpmp_free_coherent(size, vhtbl->lut,
vhtbl->phys);
vhtbl->lut = NULL;
vhtbl->phys = 0;
} else
ok = true;
} else {
vhtbl->lut = NULL;
vhtbl->phys = 0;
}
}
err_out:
return ok ? 0 : ret;
}
static void set_cpu_mask(void)
{
int cpu_num;
for_each_possible_cpu(cpu_num) {
cpumask_set_cpu(cpu_num,
&tfreq_data.pcluster[
tegra18_logical_to_cluster(cpu_num)].cpu_mask);
}
}
static int __init register_with_emc_bwmgr(void)
{
enum tegra_bwmgr_client_id bw_id = TEGRA_BWMGR_CLIENT_CPU_CLUSTER_0;
struct tegra_bwmgr_client *bwmgr;
int cl;
int ret = 0;
LOOP_FOR_EACH_CLUSTER(cl) {
bwmgr = tegra_bwmgr_register(bw_id);
if (IS_ERR_OR_NULL(bwmgr)) {
pr_warn("emc bw manager registration failed for %s\n",
CLUSTER_STR(cl));
ret = -ENODEV;
while (cl--)
tegra_bwmgr_unregister(
tfreq_data.pcluster[cl].bwmgr);
goto err_out;
}
tfreq_data.pcluster[cl].bwmgr = bwmgr;
bw_id = TEGRA_BWMGR_CLIENT_CPU_CLUSTER_1;
}
err_out:
return ret;
}
static int __init tegra186_cpufreq_probe(struct platform_device *pdev)
{
struct device_node *dn = NULL;
struct resource *res;
void __iomem *regs;
uint32_t cpu;
int ret = 0;
dn = pdev->dev.of_node;
if (of_device_is_compatible(dn, "nvidia,tegra18x-cpufreq-hv")) {
tegra_cpufreq_hv_mode = true;
pr_info("tegra18x-cpufreq: Using hv path\n");
ret = parse_hv_dt_data(dn);
if (ret)
goto err_out;
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
goto err_out;
tfreq_data.pcluster[B_CLUSTER].edvd_pub = regs + B_CL_OFFSET;
tfreq_data.pcluster[M_CLUSTER].edvd_pub = regs + M_CL_OFFSET;
tfreq_data.regs = regs;
}
set_cpu_mask();
mutex_init(&tfreq_data.mlock);
tfreq_data.freq_compute_delay = US_DELAY;
for_each_possible_cpu(cpu) {
mutex_init(&per_cpu(pcpu_mlock, cpu));
spin_lock_init(&per_cpu(pcpu_slock, cpu));
}
tfreq_data.pcluster[B_CLUSTER].cluster_present = false;
tfreq_data.pcluster[M_CLUSTER].cluster_present = false;
for_each_possible_cpu(cpu) {
if (tegra18_logical_to_cluster(cpu) == B_CLUSTER)
tfreq_data.pcluster[B_CLUSTER].cluster_present = true;
else if (tegra18_logical_to_cluster(cpu) == M_CLUSTER)
tfreq_data.pcluster[M_CLUSTER].cluster_present = true;
}
cpu_emc_mapping_dt = tegra_cpufreq_cpu_emc_map_dt_init(dn);
pr_info("CPU EMC frequency mapping table: %s\n",
cpu_emc_mapping_dt ? "from device tree" : "default setting");
#ifdef CONFIG_DEBUG_FS
tegra_cpufreq_debug_init();
#endif
ret = register_with_emc_bwmgr();
if (ret) {
pr_err("tegra18x-cpufreq: unable to register with emc bw manager\n");
goto err_free_res;
}
ret = get_lut_from_bpmp();
if (ret)
goto err_free_res;
ret = create_ndiv_to_vindex_table();
if (ret)
goto err_free_res;
enable_cc3(dn);
ret = init_freqtbls(dn);
if (ret)
goto err_free_res;
ret = cpufreq_register_driver(&tegra_cpufreq_driver);
if (ret)
goto err_free_res;
pm_qos_register_notifier();
cpufreq_register_notifier(&tegra_boundaries_cpufreq_nb,
CPUFREQ_POLICY_NOTIFIER);
#ifdef CONFIG_CPU_PM
cpu_pm_register_notifier(&tegra_cpu_pm_nb);
#endif
goto exit_out;
err_free_res:
free_resources(&pdev->dev);
exit_out:
free_shared_lut();
err_out:
pr_info("cpufreq: platform driver Initialization: %s\n",
(ret ? "fail" : "pass"));
return ret;
}
static int tegra186_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_notifier(&tegra_boundaries_cpufreq_nb,
CPUFREQ_POLICY_NOTIFIER);
#ifdef CONFIG_DEBUG_FS
tegra_cpufreq_debug_exit();
#endif
cpufreq_unregister_driver(&tegra_cpufreq_driver);
free_resources(&pdev->dev);
return 0;
}
static const struct of_device_id tegra186_cpufreq_of_match[] = {
{ .compatible = "nvidia,tegra18x-cpufreq", },
{ .compatible = "nvidia,tegra18x-cpufreq-hv", },
{ }
};
MODULE_DEVICE_TABLE(of, tegra186_cpufreq_of_match);
static struct platform_driver tegra186_cpufreq_platform_driver __refdata = {
.driver = {
.name = "tegra186-cpufreq",
.of_match_table = tegra186_cpufreq_of_match,
},
.probe = tegra186_cpufreq_probe,
.remove = tegra186_cpufreq_remove,
};
module_platform_driver(tegra186_cpufreq_platform_driver);
MODULE_AUTHOR("Puneet Saxena <puneets@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra186 cpufreq driver");
MODULE_LICENSE("GPL v2");