Jetpack/kernel/nvidia/drivers/misc/tegra-profiler/power_clk.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

613 lines
12 KiB
C

/*
* drivers/misc/tegra-profiler/power_clk.c
*
* Copyright (c) 2013-2019, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/clk.h>
#include <linux/notifier.h>
#include <linux/workqueue.h>
#include <linux/cpu.h>
#include <linux/timer.h>
#include <linux/err.h>
#include <linux/version.h>
#include <linux/tegra_profiler.h>
#include "power_clk.h"
#include "quadd.h"
#include "hrt.h"
#include "comm.h"
#include "debug.h"
#define PCLK_MAX_VALUES 32
struct power_clk_data {
unsigned int value;
unsigned int prev;
};
#define PCLK_NB_GPU 0
#define PCLK_NB_EMC 0
enum {
PCLK_NB_CPU_FREQ,
PCLK_NB_CPU_HOTPLUG,
PCLK_NB_CPU_MAX,
};
#define PCLK_NB_MAX PCLK_NB_CPU_MAX
struct power_clk_source {
int type;
struct clk *clkp;
struct notifier_block nb[PCLK_NB_MAX];
int cpu;
int nr;
struct power_clk_data data[PCLK_MAX_VALUES];
atomic_t active;
struct mutex lock;
};
struct power_clk_context_s {
struct power_clk_source cpu;
struct power_clk_source gpu;
struct power_clk_source emc;
struct timer_list timer;
unsigned int period;
unsigned int is_cpufreq : 1;
struct quadd_ctx *quadd_ctx;
};
static struct power_clk_context_s power_ctx;
static void make_sample(struct power_clk_source *s)
{
int i;
u32 values[PCLK_MAX_VALUES];
struct quadd_iovec vec;
struct quadd_record_data record;
struct quadd_power_rate_data *p = &record.power_rate;
record.record_type = QUADD_RECORD_TYPE_POWER_RATE;
p->type = (u8)s->type;
p->time = quadd_get_time();
p->cpu_id = (u32)s->cpu;
p->flags = 0;
if (s->type == QUADD_POWER_CLK_CPU) {
p->nr_values = 1;
values[0] = s->data[s->cpu].value;
} else {
p->nr_values = (u16)s->nr;
for (i = 0; i < s->nr; i++)
values[i] = s->data[i].value;
}
vec.base = values;
vec.len = p->nr_values * sizeof(values[0]);
quadd_put_sample(&record, &vec, 1);
}
static void
make_sample_hotplug(int cpu, int is_online)
{
struct quadd_record_data record;
struct quadd_hotplug_data *s = &record.hotplug;
record.record_type = QUADD_RECORD_TYPE_HOTPLUG;
s->cpu = cpu;
s->is_online = is_online ? 1 : 0;
s->time = quadd_get_time();
s->reserved = 0;
quadd_put_sample(&record, NULL, 0);
}
static inline int
is_data_changed(struct power_clk_source *s)
{
int i, cpu;
if (s->type == QUADD_POWER_CLK_CPU) {
cpu = s->cpu;
return (s->data[cpu].value != s->data[cpu].prev);
}
for (i = 0; i < s->nr; i++) {
if (s->data[i].value != s->data[i].prev)
return 1;
}
return 0;
}
static inline void
update_data(struct power_clk_source *s)
{
int i, cpu;
if (s->type == QUADD_POWER_CLK_CPU) {
cpu = s->cpu;
s->data[cpu].prev = s->data[cpu].value;
return;
}
for (i = 0; i < s->nr; i++)
s->data[i].prev = s->data[i].value;
}
static void check_source(struct power_clk_source *s)
{
if (is_data_changed(s)) {
update_data(s);
make_sample(s);
}
}
static void
read_source(struct power_clk_source *s, int cpu)
{
unsigned int value;
switch (s->type) {
case QUADD_POWER_CLK_CPU:
/* update cpu frequency */
if (cpu < 0 || cpu >= max_t(int, s->nr, nr_cpu_ids)) {
pr_err_once("error: cpu id: %d\n", cpu);
break;
}
value = cpufreq_get(cpu);
if (!mutex_trylock(&s->lock))
break;
s->cpu = cpu;
s->data[cpu].value = value;
pr_debug("PCLK_CPU(%d), value: %u\n", cpu, s->data[cpu].value);
check_source(s);
mutex_unlock(&s->lock);
break;
case QUADD_POWER_CLK_GPU:
/* update gpu frequency */
if (!mutex_trylock(&s->lock))
break;
if (s->clkp)
s->data[0].value =
(unsigned int)(clk_get_rate(s->clkp) / 1000);
pr_debug("PCLK_GPU, value: %u\n", s->data[0].value);
s->cpu = cpu;
check_source(s);
mutex_unlock(&s->lock);
break;
case QUADD_POWER_CLK_EMC:
/* update emc frequency */
if (!mutex_trylock(&s->lock))
break;
if (s->clkp)
s->data[0].value =
(unsigned int)(clk_get_rate(s->clkp) / 1000);
pr_debug("PCLK_EMC, value: %u\n", s->data[0].value);
s->cpu = cpu;
check_source(s);
mutex_unlock(&s->lock);
break;
default:
pr_err_once("error: invalid power_clk type\n");
break;
}
}
static int
gpu_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
read_source(&power_ctx.gpu, -1);
return NOTIFY_DONE;
}
static int
emc_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
read_source(&power_ctx.emc, -1);
return NOTIFY_DONE;
}
static void
read_cpufreq(struct power_clk_source *s, struct cpufreq_freqs *freq)
{
int cpu, cpufreq;
if (!mutex_trylock(&s->lock))
return;
if (!atomic_read(&s->active))
goto out_unlock;
cpu = freq->cpu;
cpufreq = freq->new;
pr_debug("cpu: %d, cpufreq: %d\n", cpu, cpufreq);
if (cpu >= s->nr) {
pr_err_once("error: cpu id: %d\n", cpu);
goto out_unlock;
}
s->cpu = cpu;
s->data[cpu].value = cpufreq;
pr_debug("[%d] cpufreq: %u --> %u\n",
cpu, freq->old, cpufreq);
check_source(s);
out_unlock:
mutex_unlock(&s->lock);
}
static int
cpufreq_notifier_call(struct notifier_block *nb,
unsigned long action, void *hcpu)
{
struct cpufreq_freqs *freq;
struct power_clk_source *s = &power_ctx.cpu;
if (!atomic_read(&s->active))
return 0;
pr_debug("action: %lu\n", action);
if (action == CPUFREQ_POSTCHANGE) {
freq = hcpu;
read_cpufreq(s, freq);
}
return 0;
}
static int
cpu_hotplug_notifier_call(struct notifier_block *nb,
unsigned long action, void *hcpu)
{
int cpu;
struct power_clk_source *s = &power_ctx.cpu;
if (!atomic_read(&s->active))
return NOTIFY_DONE;
cpu = (long)hcpu;
pr_debug("cpu: %d, action: %lu\n", cpu, action);
if (cpu >= s->nr) {
pr_err_once("error: cpu id: %d\n", cpu);
return NOTIFY_DONE;
}
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
make_sample_hotplug(cpu, 1);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
mutex_lock(&s->lock);
if (atomic_read(&s->active))
s->data[cpu].value = 0;
mutex_unlock(&s->lock);
make_sample_hotplug(cpu, 0);
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static void reset_data(struct power_clk_source *s)
{
int i;
for (i = 0; i < s->nr; i++) {
s->data[i].value = 0;
s->data[i].prev = 0;
}
}
static void init_source(struct power_clk_source *s,
int nr_values,
unsigned int type)
{
s->clkp = NULL;
s->type = type;
s->nr = min_t(int, nr_values, PCLK_MAX_VALUES);
atomic_set(&s->active, 0);
mutex_init(&s->lock);
reset_data(s);
}
static void
power_clk_work_func(struct work_struct *work)
{
read_source(&power_ctx.gpu, -1);
read_source(&power_ctx.emc, -1);
}
static DECLARE_WORK(power_clk_work, power_clk_work_func);
static void power_clk_timer(unsigned long data)
{
struct timer_list *timer = &power_ctx.timer;
schedule_work(&power_clk_work);
timer->expires = jiffies + msecs_to_jiffies(power_ctx.period);
add_timer(timer);
}
static void
read_all_sources_work_func(struct work_struct *work)
{
int cpu_id;
struct power_clk_source *s = &power_ctx.cpu;
if (power_ctx.is_cpufreq) {
for_each_possible_cpu(cpu_id)
read_source(s, cpu_id);
}
read_source(&power_ctx.gpu, -1);
read_source(&power_ctx.emc, -1);
}
static DECLARE_WORK(read_all_sources_work, read_all_sources_work_func);
static int
enable_clock(struct power_clk_source *s, struct notifier_block *nb,
const char *dev_id, const char *con_id)
{
int ret;
mutex_lock(&s->lock);
s->clkp = clk_get_sys(dev_id, con_id);
if (IS_ERR_OR_NULL(s->clkp)) {
pr_warn("warning: could not setup clock: \"%s:%s\"\n",
dev_id ? dev_id : "", con_id ? con_id : "");
ret = -ENOENT;
goto errout;
}
ret = clk_prepare_enable(s->clkp);
if (ret) {
pr_warn("warning: could not enable gpu clock\n");
goto errout_free_clk;
}
#ifdef CONFIG_COMMON_CLK
ret = clk_notifier_register(s->clkp, nb);
if (ret) {
pr_warn("warning: could not register clock: \"%s:%s\"\n",
dev_id ? dev_id : "", con_id ? con_id : "");
goto errout_disable_clk;
}
#endif
reset_data(s);
atomic_set(&s->active, 1);
mutex_unlock(&s->lock);
return 0;
#ifdef CONFIG_COMMON_CLK
errout_disable_clk:
clk_disable_unprepare(s->clkp);
#endif
errout_free_clk:
clk_put(s->clkp);
errout:
s->clkp = NULL;
atomic_set(&s->active, 0);
mutex_unlock(&s->lock);
return ret;
}
static void
disable_clock(struct power_clk_source *s, struct notifier_block *nb)
{
mutex_lock(&s->lock);
if (atomic_cmpxchg(&s->active, 1, 0)) {
if (s->clkp) {
#ifdef CONFIG_COMMON_CLK
clk_notifier_unregister(s->clkp, nb);
#endif
clk_disable_unprepare(s->clkp);
clk_put(s->clkp);
s->clkp = NULL;
}
}
mutex_unlock(&s->lock);
}
int quadd_power_clk_start(void)
{
struct power_clk_source *s;
struct timer_list *timer = &power_ctx.timer;
struct quadd_parameters *param = &power_ctx.quadd_ctx->param;
if (param->power_rate_freq == 0) {
pr_info("power_clk is not started\n");
return 0;
}
#ifdef CONFIG_COMMON_CLK
power_ctx.period = 0;
#else
power_ctx.period = MSEC_PER_SEC / param->power_rate_freq;
pr_info("pclk: use timer, freq: %u\n", param->power_rate_freq);
#endif
pr_info("pclk: start, cpufreq: %s\n",
power_ctx.is_cpufreq ? "yes" : "no");
/* setup gpu frequency */
s = &power_ctx.gpu;
enable_clock(s, &s->nb[PCLK_NB_GPU], "3d", NULL);
/* setup emc frequency */
s = &power_ctx.emc;
enable_clock(s, &s->nb[PCLK_NB_EMC], "cpu", "emc");
/* setup cpu frequency notifier */
if (power_ctx.is_cpufreq) {
s = &power_ctx.cpu;
mutex_lock(&s->lock);
reset_data(s);
atomic_set(&s->active, 1);
mutex_unlock(&s->lock);
}
if (power_ctx.period > 0) {
init_timer(timer);
timer->function = power_clk_timer;
timer->expires = jiffies + msecs_to_jiffies(power_ctx.period);
timer->data = 0;
add_timer(timer);
}
schedule_work(&read_all_sources_work);
return 0;
}
void quadd_power_clk_stop(void)
{
struct power_clk_source *s;
struct quadd_parameters *param = &power_ctx.quadd_ctx->param;
if (param->power_rate_freq == 0)
return;
if (power_ctx.period > 0)
del_timer_sync(&power_ctx.timer);
s = &power_ctx.gpu;
disable_clock(s, &s->nb[PCLK_NB_GPU]);
s = &power_ctx.emc;
disable_clock(s, &s->nb[PCLK_NB_EMC]);
if (power_ctx.is_cpufreq) {
s = &power_ctx.cpu;
mutex_lock(&s->lock);
atomic_set(&s->active, 0);
s->clkp = NULL;
mutex_unlock(&s->lock);
}
pr_info("pclk: stop\n");
}
int quadd_power_clk_init(struct quadd_ctx *quadd_ctx)
{
int __maybe_unused ret;
struct power_clk_source *s;
s = &power_ctx.gpu;
s->nb[PCLK_NB_GPU].notifier_call = gpu_notifier_call;
init_source(s, 1, QUADD_POWER_CLK_GPU);
s = &power_ctx.emc;
s->nb[PCLK_NB_EMC].notifier_call = emc_notifier_call;
init_source(s, 1, QUADD_POWER_CLK_EMC);
s = &power_ctx.cpu;
s->nb[PCLK_NB_CPU_FREQ].notifier_call = cpufreq_notifier_call;
s->nb[PCLK_NB_CPU_HOTPLUG].notifier_call = cpu_hotplug_notifier_call;
init_source(s, nr_cpu_ids, QUADD_POWER_CLK_CPU);
power_ctx.quadd_ctx = quadd_ctx;
#ifdef CONFIG_CPU_FREQ
ret = cpufreq_register_notifier(&s->nb[PCLK_NB_CPU_FREQ],
CPUFREQ_TRANSITION_NOTIFIER);
if (ret < 0) {
pr_warn("CPU freq registration failed: %d\n", ret);
power_ctx.is_cpufreq = 0;
} else {
power_ctx.is_cpufreq = 1;
}
#else
power_ctx.is_cpufreq = 0;
#endif
quadd_ctx->pclk_cpufreq = power_ctx.is_cpufreq;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
register_cpu_notifier(&s->nb[PCLK_NB_CPU_HOTPLUG]);
#endif
return 0;
}
void quadd_power_clk_deinit(void)
{
struct power_clk_source *s = &power_ctx.cpu;
quadd_power_clk_stop();
#ifdef CONFIG_CPU_FREQ
if (power_ctx.is_cpufreq)
cpufreq_unregister_notifier(&s->nb[PCLK_NB_CPU_FREQ],
CPUFREQ_TRANSITION_NOTIFIER);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
unregister_cpu_notifier(&s->nb[PCLK_NB_CPU_HOTPLUG]);
#endif
}