Jetpack/u-boot/drivers/usb/eth/asix88179.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

716 lines
18 KiB
C

/*
* Copyright (c) 2014 Rene Griessl <rgriessl@cit-ec.uni-bielefeld.de>
* based on the U-Boot Asix driver as well as information
* from the Linux AX88179_178a driver
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <usb.h>
#include <net.h>
#include <linux/mii.h>
#include "usb_ether.h"
#include <malloc.h>
#include <memalign.h>
#include <errno.h>
/* ASIX AX88179 based USB 3.0 Ethernet Devices */
#define AX88179_PHY_ID 0x03
#define AX_EEPROM_LEN 0x100
#define AX88179_EEPROM_MAGIC 0x17900b95
#define AX_MCAST_FLTSIZE 8
#define AX_MAX_MCAST 64
#define AX_INT_PPLS_LINK (1 << 16)
#define AX_RXHDR_L4_TYPE_MASK 0x1c
#define AX_RXHDR_L4_TYPE_UDP 4
#define AX_RXHDR_L4_TYPE_TCP 16
#define AX_RXHDR_L3CSUM_ERR 2
#define AX_RXHDR_L4CSUM_ERR 1
#define AX_RXHDR_CRC_ERR (1 << 29)
#define AX_RXHDR_DROP_ERR (1 << 31)
#define AX_ENDPOINT_INT 0x01
#define AX_ENDPOINT_IN 0x02
#define AX_ENDPOINT_OUT 0x03
#define AX_ACCESS_MAC 0x01
#define AX_ACCESS_PHY 0x02
#define AX_ACCESS_EEPROM 0x04
#define AX_ACCESS_EFUS 0x05
#define AX_PAUSE_WATERLVL_HIGH 0x54
#define AX_PAUSE_WATERLVL_LOW 0x55
#define PHYSICAL_LINK_STATUS 0x02
#define AX_USB_SS (1 << 2)
#define AX_USB_HS (1 << 1)
#define GENERAL_STATUS 0x03
#define AX_SECLD (1 << 2)
#define AX_SROM_ADDR 0x07
#define AX_SROM_CMD 0x0a
#define EEP_RD (1 << 2)
#define EEP_BUSY (1 << 4)
#define AX_SROM_DATA_LOW 0x08
#define AX_SROM_DATA_HIGH 0x09
#define AX_RX_CTL 0x0b
#define AX_RX_CTL_DROPCRCERR (1 << 8)
#define AX_RX_CTL_IPE (1 << 9)
#define AX_RX_CTL_START (1 << 7)
#define AX_RX_CTL_AP (1 << 5)
#define AX_RX_CTL_AM (1 << 4)
#define AX_RX_CTL_AB (1 << 3)
#define AX_RX_CTL_AMALL (1 << 1)
#define AX_RX_CTL_PRO (1 << 0)
#define AX_RX_CTL_STOP 0
#define AX_NODE_ID 0x10
#define AX_MULFLTARY 0x16
#define AX_MEDIUM_STATUS_MODE 0x22
#define AX_MEDIUM_GIGAMODE (1 << 0)
#define AX_MEDIUM_FULL_DUPLEX (1 << 1)
#define AX_MEDIUM_EN_125MHZ (1 << 3)
#define AX_MEDIUM_RXFLOW_CTRLEN (1 << 4)
#define AX_MEDIUM_TXFLOW_CTRLEN (1 << 5)
#define AX_MEDIUM_RECEIVE_EN (1 << 8)
#define AX_MEDIUM_PS (1 << 9)
#define AX_MEDIUM_JUMBO_EN 0x8040
#define AX_MONITOR_MOD 0x24
#define AX_MONITOR_MODE_RWLC (1 << 1)
#define AX_MONITOR_MODE_RWMP (1 << 2)
#define AX_MONITOR_MODE_PMEPOL (1 << 5)
#define AX_MONITOR_MODE_PMETYPE (1 << 6)
#define AX_GPIO_CTRL 0x25
#define AX_GPIO_CTRL_GPIO3EN (1 << 7)
#define AX_GPIO_CTRL_GPIO2EN (1 << 6)
#define AX_GPIO_CTRL_GPIO1EN (1 << 5)
#define AX_PHYPWR_RSTCTL 0x26
#define AX_PHYPWR_RSTCTL_BZ (1 << 4)
#define AX_PHYPWR_RSTCTL_IPRL (1 << 5)
#define AX_PHYPWR_RSTCTL_AT (1 << 12)
#define AX_RX_BULKIN_QCTRL 0x2e
#define AX_CLK_SELECT 0x33
#define AX_CLK_SELECT_BCS (1 << 0)
#define AX_CLK_SELECT_ACS (1 << 1)
#define AX_CLK_SELECT_ULR (1 << 3)
#define AX_RXCOE_CTL 0x34
#define AX_RXCOE_IP (1 << 0)
#define AX_RXCOE_TCP (1 << 1)
#define AX_RXCOE_UDP (1 << 2)
#define AX_RXCOE_TCPV6 (1 << 5)
#define AX_RXCOE_UDPV6 (1 << 6)
#define AX_TXCOE_CTL 0x35
#define AX_TXCOE_IP (1 << 0)
#define AX_TXCOE_TCP (1 << 1)
#define AX_TXCOE_UDP (1 << 2)
#define AX_TXCOE_TCPV6 (1 << 5)
#define AX_TXCOE_UDPV6 (1 << 6)
#define AX_LEDCTRL 0x73
#define GMII_PHY_PHYSR 0x11
#define GMII_PHY_PHYSR_SMASK 0xc000
#define GMII_PHY_PHYSR_GIGA (1 << 15)
#define GMII_PHY_PHYSR_100 (1 << 14)
#define GMII_PHY_PHYSR_FULL (1 << 13)
#define GMII_PHY_PHYSR_LINK (1 << 10)
#define GMII_LED_ACT 0x1a
#define GMII_LED_ACTIVE_MASK 0xff8f
#define GMII_LED0_ACTIVE (1 << 4)
#define GMII_LED1_ACTIVE (1 << 5)
#define GMII_LED2_ACTIVE (1 << 6)
#define GMII_LED_LINK 0x1c
#define GMII_LED_LINK_MASK 0xf888
#define GMII_LED0_LINK_10 (1 << 0)
#define GMII_LED0_LINK_100 (1 << 1)
#define GMII_LED0_LINK_1000 (1 << 2)
#define GMII_LED1_LINK_10 (1 << 4)
#define GMII_LED1_LINK_100 (1 << 5)
#define GMII_LED1_LINK_1000 (1 << 6)
#define GMII_LED2_LINK_10 (1 << 8)
#define GMII_LED2_LINK_100 (1 << 9)
#define GMII_LED2_LINK_1000 (1 << 10)
#define LED0_ACTIVE (1 << 0)
#define LED0_LINK_10 (1 << 1)
#define LED0_LINK_100 (1 << 2)
#define LED0_LINK_1000 (1 << 3)
#define LED0_FD (1 << 4)
#define LED0_USB3_MASK 0x001f
#define LED1_ACTIVE (1 << 5)
#define LED1_LINK_10 (1 << 6)
#define LED1_LINK_100 (1 << 7)
#define LED1_LINK_1000 (1 << 8)
#define LED1_FD (1 << 9)
#define LED1_USB3_MASK 0x03e0
#define LED2_ACTIVE (1 << 10)
#define LED2_LINK_1000 (1 << 13)
#define LED2_LINK_100 (1 << 12)
#define LED2_LINK_10 (1 << 11)
#define LED2_FD (1 << 14)
#define LED_VALID (1 << 15)
#define LED2_USB3_MASK 0x7c00
#define GMII_PHYPAGE 0x1e
#define GMII_PHY_PAGE_SELECT 0x1f
#define GMII_PHY_PGSEL_EXT 0x0007
#define GMII_PHY_PGSEL_PAGE0 0x0000
/* local defines */
#define ASIX_BASE_NAME "axg"
#define USB_CTRL_SET_TIMEOUT 5000
#define USB_CTRL_GET_TIMEOUT 5000
#define USB_BULK_SEND_TIMEOUT 5000
#define USB_BULK_RECV_TIMEOUT 5000
#define AX_RX_URB_SIZE 1024 * 0x12
#define BLK_FRAME_SIZE 0x200
#define PHY_CONNECT_TIMEOUT 5000
#define TIMEOUT_RESOLUTION 50 /* ms */
#define FLAG_NONE 0
#define FLAG_TYPE_AX88179 (1U << 0)
#define FLAG_TYPE_AX88178a (1U << 1)
#define FLAG_TYPE_DLINK_DUB1312 (1U << 2)
#define FLAG_TYPE_SITECOM (1U << 3)
#define FLAG_TYPE_SAMSUNG (1U << 4)
#define FLAG_TYPE_LENOVO (1U << 5)
/* local vars */
static const struct {
unsigned char ctrl, timer_l, timer_h, size, ifg;
} AX88179_BULKIN_SIZE[] = {
{7, 0x4f, 0, 0x02, 0xff},
{7, 0x20, 3, 0x03, 0xff},
{7, 0xae, 7, 0x04, 0xff},
{7, 0xcc, 0x4c, 0x04, 8},
};
static int curr_eth_dev; /* index for name of next device detected */
/* driver private */
struct asix_private {
int flags;
int rx_urb_size;
int maxpacketsize;
};
/*
* Asix infrastructure commands
*/
static int asix_write_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, size);
debug("asix_write_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n",
cmd, value, index, size);
memcpy(buf, data, size);
len = usb_control_msg(
dev->pusb_dev,
usb_sndctrlpipe(dev->pusb_dev, 0),
cmd,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value,
index,
buf,
size,
USB_CTRL_SET_TIMEOUT);
return len == size ? 0 : ECOMM;
}
static int asix_read_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int len;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, size);
debug("asix_read_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n",
cmd, value, index, size);
len = usb_control_msg(
dev->pusb_dev,
usb_rcvctrlpipe(dev->pusb_dev, 0),
cmd,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value,
index,
buf,
size,
USB_CTRL_GET_TIMEOUT);
memcpy(data, buf, size);
return len == size ? 0 : ECOMM;
}
static int asix_read_mac(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
u8 buf[ETH_ALEN];
asix_read_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, 6, 6, buf);
debug("asix_read_mac() returning %02x:%02x:%02x:%02x:%02x:%02x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
memcpy(eth->enetaddr, buf, ETH_ALEN);
return 0;
}
static int asix_write_mac(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
int ret;
ret = asix_write_cmd(dev, AX_ACCESS_MAC, AX_NODE_ID, ETH_ALEN,
ETH_ALEN, eth->enetaddr);
if (ret < 0)
debug("Failed to set MAC address: %02x\n", ret);
return ret;
}
static int asix_basic_reset(struct ueth_data *dev)
{
struct asix_private *dev_priv = (struct asix_private *)dev->dev_priv;
u8 buf[5];
u16 *tmp16;
u8 *tmp;
tmp16 = (u16 *)buf;
tmp = (u8 *)buf;
/* Power up ethernet PHY */
*tmp16 = 0;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
*tmp16 = AX_PHYPWR_RSTCTL_IPRL;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_PHYPWR_RSTCTL, 2, 2, tmp16);
mdelay(200);
*tmp = AX_CLK_SELECT_ACS | AX_CLK_SELECT_BCS;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_CLK_SELECT, 1, 1, tmp);
mdelay(200);
/* RX bulk configuration */
memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
asix_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
dev_priv->rx_urb_size = 128 * 20;
/* Water Level configuration */
*tmp = 0x34;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_LOW, 1, 1, tmp);
*tmp = 0x52;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_PAUSE_WATERLVL_HIGH, 1, 1, tmp);
/* Enable checksum offload */
*tmp = AX_RXCOE_IP | AX_RXCOE_TCP | AX_RXCOE_UDP |
AX_RXCOE_TCPV6 | AX_RXCOE_UDPV6;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_RXCOE_CTL, 1, 1, tmp);
*tmp = AX_TXCOE_IP | AX_TXCOE_TCP | AX_TXCOE_UDP |
AX_TXCOE_TCPV6 | AX_TXCOE_UDPV6;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_TXCOE_CTL, 1, 1, tmp);
/* Configure RX control register => start operation */
*tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START |
AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16);
*tmp = AX_MONITOR_MODE_PMETYPE | AX_MONITOR_MODE_PMEPOL |
AX_MONITOR_MODE_RWMP;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_MONITOR_MOD, 1, 1, tmp);
/* Configure default medium type => giga */
*tmp16 = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN |
AX_MEDIUM_RXFLOW_CTRLEN | AX_MEDIUM_FULL_DUPLEX |
AX_MEDIUM_GIGAMODE | AX_MEDIUM_JUMBO_EN;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE, 2, 2, tmp16);
u16 adv = 0;
adv = ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_LPACK |
ADVERTISE_NPAGE | ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP;
asix_write_cmd(dev, AX_ACCESS_PHY, 0x03, MII_ADVERTISE, 2, &adv);
adv = ADVERTISE_1000FULL;
asix_write_cmd(dev, AX_ACCESS_PHY, 0x03, MII_CTRL1000, 2, &adv);
return 0;
}
static int asix_wait_link(struct ueth_data *dev)
{
int timeout = 0;
int link_detected;
u8 buf[2];
u16 *tmp16;
tmp16 = (u16 *)buf;
do {
asix_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
MII_BMSR, 2, buf);
link_detected = *tmp16 & BMSR_LSTATUS;
if (!link_detected) {
if (timeout == 0)
printf("Waiting for Ethernet connection... ");
mdelay(TIMEOUT_RESOLUTION);
timeout += TIMEOUT_RESOLUTION;
}
} while (!link_detected && timeout < PHY_CONNECT_TIMEOUT);
if (link_detected) {
if (timeout > 0)
printf("done.\n");
return 0;
} else {
printf("unable to connect.\n");
return -ENETUNREACH;
}
}
/*
* Asix callbacks
*/
static int asix_init(struct eth_device *eth, bd_t *bd)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
struct asix_private *dev_priv = (struct asix_private *)dev->dev_priv;
u8 buf[2], tmp[5], link_sts;
u16 *tmp16, mode;
tmp16 = (u16 *)buf;
debug("** %s()\n", __func__);
/* Configure RX control register => start operation */
*tmp16 = AX_RX_CTL_DROPCRCERR | AX_RX_CTL_IPE | AX_RX_CTL_START |
AX_RX_CTL_AP | AX_RX_CTL_AMALL | AX_RX_CTL_AB;
if (asix_write_cmd(dev, AX_ACCESS_MAC, AX_RX_CTL, 2, 2, tmp16) != 0)
goto out_err;
if (asix_wait_link(dev) != 0) {
/*reset device and try again*/
printf("Reset Ethernet Device\n");
asix_basic_reset(dev);
if (asix_wait_link(dev) != 0)
goto out_err;
}
/* Configure link */
mode = AX_MEDIUM_RECEIVE_EN | AX_MEDIUM_TXFLOW_CTRLEN |
AX_MEDIUM_RXFLOW_CTRLEN;
asix_read_cmd(dev, AX_ACCESS_MAC, PHYSICAL_LINK_STATUS,
1, 1, &link_sts);
asix_read_cmd(dev, AX_ACCESS_PHY, AX88179_PHY_ID,
GMII_PHY_PHYSR, 2, tmp16);
if (!(*tmp16 & GMII_PHY_PHYSR_LINK)) {
return 0;
} else if (GMII_PHY_PHYSR_GIGA == (*tmp16 & GMII_PHY_PHYSR_SMASK)) {
mode |= AX_MEDIUM_GIGAMODE | AX_MEDIUM_EN_125MHZ |
AX_MEDIUM_JUMBO_EN;
if (link_sts & AX_USB_SS)
memcpy(tmp, &AX88179_BULKIN_SIZE[0], 5);
else if (link_sts & AX_USB_HS)
memcpy(tmp, &AX88179_BULKIN_SIZE[1], 5);
else
memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
} else if (GMII_PHY_PHYSR_100 == (*tmp16 & GMII_PHY_PHYSR_SMASK)) {
mode |= AX_MEDIUM_PS;
if (link_sts & (AX_USB_SS | AX_USB_HS))
memcpy(tmp, &AX88179_BULKIN_SIZE[2], 5);
else
memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
} else {
memcpy(tmp, &AX88179_BULKIN_SIZE[3], 5);
}
/* RX bulk configuration */
asix_write_cmd(dev, AX_ACCESS_MAC, AX_RX_BULKIN_QCTRL, 5, 5, tmp);
dev_priv->rx_urb_size = (1024 * (tmp[3] + 2));
if (*tmp16 & GMII_PHY_PHYSR_FULL)
mode |= AX_MEDIUM_FULL_DUPLEX;
asix_write_cmd(dev, AX_ACCESS_MAC, AX_MEDIUM_STATUS_MODE,
2, 2, &mode);
return 0;
out_err:
return -1;
}
static int asix_send(struct eth_device *eth, void *packet, int length)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
struct asix_private *dev_priv = (struct asix_private *)dev->dev_priv;
int err;
u32 packet_len, tx_hdr2;
int actual_len, framesize;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg,
PKTSIZE + (2 * sizeof(packet_len)));
debug("** %s(), len %d\n", __func__, length);
packet_len = length;
cpu_to_le32s(&packet_len);
memcpy(msg, &packet_len, sizeof(packet_len));
framesize = dev_priv->maxpacketsize;
tx_hdr2 = 0;
if (((length + 8) % framesize) == 0)
tx_hdr2 |= 0x80008000; /* Enable padding */
cpu_to_le32s(&tx_hdr2);
memcpy(msg + sizeof(packet_len), &tx_hdr2, sizeof(tx_hdr2));
memcpy(msg + sizeof(packet_len) + sizeof(tx_hdr2),
(void *)packet, length);
err = usb_bulk_msg(dev->pusb_dev,
usb_sndbulkpipe(dev->pusb_dev, dev->ep_out),
(void *)msg,
length + sizeof(packet_len) + sizeof(tx_hdr2),
&actual_len,
USB_BULK_SEND_TIMEOUT);
debug("Tx: len = %zu, actual = %u, err = %d\n",
length + sizeof(packet_len), actual_len, err);
return err;
}
static int asix_recv(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
struct asix_private *dev_priv = (struct asix_private *)dev->dev_priv;
u16 frame_pos;
int err;
int actual_len;
int pkt_cnt;
u32 rx_hdr;
u16 hdr_off;
u32 *pkt_hdr;
ALLOC_CACHE_ALIGN_BUFFER(u8, recv_buf, dev_priv->rx_urb_size);
actual_len = -1;
debug("** %s()\n", __func__);
err = usb_bulk_msg(dev->pusb_dev,
usb_rcvbulkpipe(dev->pusb_dev, dev->ep_in),
(void *)recv_buf,
dev_priv->rx_urb_size,
&actual_len,
USB_BULK_RECV_TIMEOUT);
debug("Rx: len = %u, actual = %u, err = %d\n", dev_priv->rx_urb_size,
actual_len, err);
if (err != 0) {
debug("Rx: failed to receive\n");
return -ECOMM;
}
if (actual_len > dev_priv->rx_urb_size) {
debug("Rx: received too many bytes %d\n", actual_len);
return -EMSGSIZE;
}
rx_hdr = *(u32 *)(recv_buf + actual_len - 4);
le32_to_cpus(&pkt_hdr);
pkt_cnt = (u16)rx_hdr;
hdr_off = (u16)(rx_hdr >> 16);
pkt_hdr = (u32 *)(recv_buf + hdr_off);
frame_pos = 0;
while (pkt_cnt--) {
u16 pkt_len;
le32_to_cpus(pkt_hdr);
pkt_len = (*pkt_hdr >> 16) & 0x1fff;
frame_pos += 2;
net_process_received_packet(recv_buf + frame_pos, pkt_len);
pkt_hdr++;
frame_pos += ((pkt_len + 7) & 0xFFF8)-2;
if (pkt_cnt == 0)
return 0;
}
return err;
}
static void asix_halt(struct eth_device *eth)
{
debug("** %s()\n", __func__);
}
/*
* Asix probing functions
*/
void ax88179_eth_before_probe(void)
{
curr_eth_dev = 0;
}
struct asix_dongle {
unsigned short vendor;
unsigned short product;
int flags;
};
static const struct asix_dongle asix_dongles[] = {
{ 0x0b95, 0x1790, FLAG_TYPE_AX88179 },
{ 0x0b95, 0x178a, FLAG_TYPE_AX88178a },
{ 0x2001, 0x4a00, FLAG_TYPE_DLINK_DUB1312 },
{ 0x0df6, 0x0072, FLAG_TYPE_SITECOM },
{ 0x04e8, 0xa100, FLAG_TYPE_SAMSUNG },
{ 0x17ef, 0x304b, FLAG_TYPE_LENOVO },
{ 0x0000, 0x0000, FLAG_NONE } /* END - Do not remove */
};
/* Probe to see if a new device is actually an asix device */
int ax88179_eth_probe(struct usb_device *dev, unsigned int ifnum,
struct ueth_data *ss)
{
struct usb_interface *iface;
struct usb_interface_descriptor *iface_desc;
struct asix_private *dev_priv;
int ep_in_found = 0, ep_out_found = 0;
int i;
/* let's examine the device now */
iface = &dev->config.if_desc[ifnum];
iface_desc = &dev->config.if_desc[ifnum].desc;
for (i = 0; asix_dongles[i].vendor != 0; i++) {
if (dev->descriptor.idVendor == asix_dongles[i].vendor &&
dev->descriptor.idProduct == asix_dongles[i].product)
/* Found a supported dongle */
break;
}
if (asix_dongles[i].vendor == 0)
return 0;
memset(ss, 0, sizeof(struct ueth_data));
/* At this point, we know we've got a live one */
debug("\n\nUSB Ethernet device detected: %#04x:%#04x\n",
dev->descriptor.idVendor, dev->descriptor.idProduct);
/* Initialize the ueth_data structure with some useful info */
ss->ifnum = ifnum;
ss->pusb_dev = dev;
ss->subclass = iface_desc->bInterfaceSubClass;
ss->protocol = iface_desc->bInterfaceProtocol;
/* alloc driver private */
ss->dev_priv = calloc(1, sizeof(struct asix_private));
if (!ss->dev_priv)
return 0;
dev_priv = ss->dev_priv;
dev_priv->flags = asix_dongles[i].flags;
/*
* We are expecting a minimum of 3 endpoints - in, out (bulk), and
* int. We will ignore any others.
*/
for (i = 0; i < iface_desc->bNumEndpoints; i++) {
/* is it an interrupt endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) {
ss->ep_int = iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ss->irqinterval = iface->ep_desc[i].bInterval;
continue;
}
/* is it an BULK endpoint? */
if (!((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK))
continue;
u8 ep_addr = iface->ep_desc[i].bEndpointAddress;
if ((ep_addr & USB_DIR_IN) && !ep_in_found) {
ss->ep_in = ep_addr &
USB_ENDPOINT_NUMBER_MASK;
ep_in_found = 1;
}
if (!(ep_addr & USB_DIR_IN) && !ep_out_found) {
ss->ep_out = ep_addr &
USB_ENDPOINT_NUMBER_MASK;
dev_priv->maxpacketsize =
dev->epmaxpacketout[AX_ENDPOINT_OUT];
ep_out_found = 1;
}
}
debug("Endpoints In %d Out %d Int %d\n",
ss->ep_in, ss->ep_out, ss->ep_int);
/* Do some basic sanity checks, and bail if we find a problem */
if (usb_set_interface(dev, iface_desc->bInterfaceNumber, 0) ||
!ss->ep_in || !ss->ep_out || !ss->ep_int) {
debug("Problems with device\n");
return 0;
}
dev->privptr = (void *)ss;
return 1;
}
int ax88179_eth_get_info(struct usb_device *dev, struct ueth_data *ss,
struct eth_device *eth)
{
if (!eth) {
debug("%s: missing parameter.\n", __func__);
return 0;
}
sprintf(eth->name, "%s%d", ASIX_BASE_NAME, curr_eth_dev++);
eth->init = asix_init;
eth->send = asix_send;
eth->recv = asix_recv;
eth->halt = asix_halt;
eth->write_hwaddr = asix_write_mac;
eth->priv = ss;
if (asix_basic_reset(ss))
return 0;
/* Get the MAC address */
if (asix_read_mac(eth))
return 0;
debug("MAC %pM\n", eth->enetaddr);
return 1;
}