Jetpack/u-boot/drivers/usb/eth/asix.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

927 lines
23 KiB
C

/*
* Copyright (c) 2011 The Chromium OS Authors.
*
* Patched for AX88772B by Antmicro Ltd <www.antmicro.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <usb.h>
#include <malloc.h>
#include <memalign.h>
#include <linux/mii.h>
#include "usb_ether.h"
/* ASIX AX8817X based USB 2.0 Ethernet Devices */
#define AX_CMD_SET_SW_MII 0x06
#define AX_CMD_READ_MII_REG 0x07
#define AX_CMD_WRITE_MII_REG 0x08
#define AX_CMD_SET_HW_MII 0x0a
#define AX_CMD_READ_EEPROM 0x0b
#define AX_CMD_READ_RX_CTL 0x0f
#define AX_CMD_WRITE_RX_CTL 0x10
#define AX_CMD_WRITE_IPG0 0x12
#define AX_CMD_READ_NODE_ID 0x13
#define AX_CMD_WRITE_NODE_ID 0x14
#define AX_CMD_READ_PHY_ID 0x19
#define AX_CMD_WRITE_MEDIUM_MODE 0x1b
#define AX_CMD_WRITE_GPIOS 0x1f
#define AX_CMD_SW_RESET 0x20
#define AX_CMD_SW_PHY_SELECT 0x22
#define AX_SWRESET_CLEAR 0x00
#define AX_SWRESET_PRTE 0x04
#define AX_SWRESET_PRL 0x08
#define AX_SWRESET_IPRL 0x20
#define AX_SWRESET_IPPD 0x40
#define AX88772_IPG0_DEFAULT 0x15
#define AX88772_IPG1_DEFAULT 0x0c
#define AX88772_IPG2_DEFAULT 0x12
/* AX88772 & AX88178 Medium Mode Register */
#define AX_MEDIUM_PF 0x0080
#define AX_MEDIUM_JFE 0x0040
#define AX_MEDIUM_TFC 0x0020
#define AX_MEDIUM_RFC 0x0010
#define AX_MEDIUM_ENCK 0x0008
#define AX_MEDIUM_AC 0x0004
#define AX_MEDIUM_FD 0x0002
#define AX_MEDIUM_GM 0x0001
#define AX_MEDIUM_SM 0x1000
#define AX_MEDIUM_SBP 0x0800
#define AX_MEDIUM_PS 0x0200
#define AX_MEDIUM_RE 0x0100
#define AX88178_MEDIUM_DEFAULT \
(AX_MEDIUM_PS | AX_MEDIUM_FD | AX_MEDIUM_AC | \
AX_MEDIUM_RFC | AX_MEDIUM_TFC | AX_MEDIUM_JFE | \
AX_MEDIUM_RE)
#define AX88772_MEDIUM_DEFAULT \
(AX_MEDIUM_FD | AX_MEDIUM_RFC | \
AX_MEDIUM_TFC | AX_MEDIUM_PS | \
AX_MEDIUM_AC | AX_MEDIUM_RE)
/* AX88772 & AX88178 RX_CTL values */
#define AX_RX_CTL_RH2M 0x0200 /* 32-bit aligned RX IP header */
#define AX_RX_CTL_RH1M 0x0100 /* Enable RX header format type 1 */
#define AX_RX_CTL_SO 0x0080
#define AX_RX_CTL_AB 0x0008
#define AX_RX_HEADER_DEFAULT (AX_RX_CTL_RH1M | AX_RX_CTL_RH2M)
#define AX_DEFAULT_RX_CTL \
(AX_RX_CTL_SO | AX_RX_CTL_AB)
/* GPIO 2 toggles */
#define AX_GPIO_GPO2EN 0x10 /* GPIO2 Output enable */
#define AX_GPIO_GPO_2 0x20 /* GPIO2 Output value */
#define AX_GPIO_RSE 0x80 /* Reload serial EEPROM */
/* local defines */
#define ASIX_BASE_NAME "asx"
#define USB_CTRL_SET_TIMEOUT 5000
#define USB_CTRL_GET_TIMEOUT 5000
#define USB_BULK_SEND_TIMEOUT 5000
#define USB_BULK_RECV_TIMEOUT 5000
#define AX_RX_URB_SIZE 2048
#define PHY_CONNECT_TIMEOUT 5000
/* asix_flags defines */
#define FLAG_NONE 0
#define FLAG_TYPE_AX88172 (1U << 0)
#define FLAG_TYPE_AX88772 (1U << 1)
#define FLAG_TYPE_AX88772B (1U << 2)
#define FLAG_EEPROM_MAC (1U << 3) /* initial mac address in eeprom */
#define ASIX_USB_VENDOR_ID 0x0b95
#define AX88772B_USB_PRODUCT_ID 0x772b
/* driver private */
struct asix_private {
int flags;
#ifdef CONFIG_DM_ETH
struct ueth_data ueth;
#endif
};
#ifndef CONFIG_DM_ETH
/* local vars */
static int curr_eth_dev; /* index for name of next device detected */
#endif
/*
* Asix infrastructure commands
*/
static int asix_write_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int len;
debug("asix_write_cmd() cmd=0x%02x value=0x%04x index=0x%04x "
"size=%d\n", cmd, value, index, size);
len = usb_control_msg(
dev->pusb_dev,
usb_sndctrlpipe(dev->pusb_dev, 0),
cmd,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value,
index,
data,
size,
USB_CTRL_SET_TIMEOUT);
return len == size ? 0 : -1;
}
static int asix_read_cmd(struct ueth_data *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
int len;
debug("asix_read_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d\n",
cmd, value, index, size);
len = usb_control_msg(
dev->pusb_dev,
usb_rcvctrlpipe(dev->pusb_dev, 0),
cmd,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value,
index,
data,
size,
USB_CTRL_GET_TIMEOUT);
return len == size ? 0 : -1;
}
static inline int asix_set_sw_mii(struct ueth_data *dev)
{
int ret;
ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL);
if (ret < 0)
debug("Failed to enable software MII access\n");
return ret;
}
static inline int asix_set_hw_mii(struct ueth_data *dev)
{
int ret;
ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL);
if (ret < 0)
debug("Failed to enable hardware MII access\n");
return ret;
}
static int asix_mdio_read(struct ueth_data *dev, int phy_id, int loc)
{
ALLOC_CACHE_ALIGN_BUFFER(__le16, res, 1);
asix_set_sw_mii(dev);
asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id, (__u16)loc, 2, res);
asix_set_hw_mii(dev);
debug("asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n",
phy_id, loc, le16_to_cpu(*res));
return le16_to_cpu(*res);
}
static void
asix_mdio_write(struct ueth_data *dev, int phy_id, int loc, int val)
{
ALLOC_CACHE_ALIGN_BUFFER(__le16, res, 1);
*res = cpu_to_le16(val);
debug("asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n",
phy_id, loc, val);
asix_set_sw_mii(dev);
asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, res);
asix_set_hw_mii(dev);
}
/*
* Asix "high level" commands
*/
static int asix_sw_reset(struct ueth_data *dev, u8 flags)
{
int ret;
ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL);
if (ret < 0)
debug("Failed to send software reset: %02x\n", ret);
else
udelay(150 * 1000);
return ret;
}
static inline int asix_get_phy_addr(struct ueth_data *dev)
{
ALLOC_CACHE_ALIGN_BUFFER(u8, buf, 2);
int ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf);
debug("asix_get_phy_addr()\n");
if (ret < 0) {
debug("Error reading PHYID register: %02x\n", ret);
goto out;
}
debug("asix_get_phy_addr() returning 0x%02x%02x\n", buf[0], buf[1]);
ret = buf[1];
out:
return ret;
}
static int asix_write_medium_mode(struct ueth_data *dev, u16 mode)
{
int ret;
debug("asix_write_medium_mode() - mode = 0x%04x\n", mode);
ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, mode,
0, 0, NULL);
if (ret < 0) {
debug("Failed to write Medium Mode mode to 0x%04x: %02x\n",
mode, ret);
}
return ret;
}
static u16 asix_read_rx_ctl(struct ueth_data *dev)
{
ALLOC_CACHE_ALIGN_BUFFER(__le16, v, 1);
int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, v);
if (ret < 0)
debug("Error reading RX_CTL register: %02x\n", ret);
else
ret = le16_to_cpu(*v);
return ret;
}
static int asix_write_rx_ctl(struct ueth_data *dev, u16 mode)
{
int ret;
debug("asix_write_rx_ctl() - mode = 0x%04x\n", mode);
ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL);
if (ret < 0) {
debug("Failed to write RX_CTL mode to 0x%04x: %02x\n",
mode, ret);
}
return ret;
}
static int asix_write_gpio(struct ueth_data *dev, u16 value, int sleep)
{
int ret;
debug("asix_write_gpio() - value = 0x%04x\n", value);
ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL);
if (ret < 0) {
debug("Failed to write GPIO value 0x%04x: %02x\n",
value, ret);
}
if (sleep)
udelay(sleep * 1000);
return ret;
}
static int asix_write_hwaddr_common(struct ueth_data *dev, uint8_t *enetaddr)
{
int ret;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, ETH_ALEN);
memcpy(buf, enetaddr, ETH_ALEN);
ret = asix_write_cmd(dev, AX_CMD_WRITE_NODE_ID, 0, 0, ETH_ALEN, buf);
if (ret < 0)
debug("Failed to set MAC address: %02x\n", ret);
return ret;
}
/*
* mii commands
*/
/*
* mii_nway_restart - restart NWay (autonegotiation) for this interface
*
* Returns 0 on success, negative on error.
*/
static int mii_nway_restart(struct ueth_data *dev)
{
int bmcr;
int r = -1;
/* if autoneg is off, it's an error */
bmcr = asix_mdio_read(dev, dev->phy_id, MII_BMCR);
if (bmcr & BMCR_ANENABLE) {
bmcr |= BMCR_ANRESTART;
asix_mdio_write(dev, dev->phy_id, MII_BMCR, bmcr);
r = 0;
}
return r;
}
static int asix_read_mac_common(struct ueth_data *dev,
struct asix_private *priv, uint8_t *enetaddr)
{
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buf, ETH_ALEN);
int i;
if (priv->flags & FLAG_EEPROM_MAC) {
for (i = 0; i < (ETH_ALEN >> 1); i++) {
if (asix_read_cmd(dev, AX_CMD_READ_EEPROM,
0x04 + i, 0, 2, buf) < 0) {
debug("Failed to read SROM address 04h.\n");
return -1;
}
memcpy(enetaddr + i * 2, buf, 2);
}
} else {
if (asix_read_cmd(dev, AX_CMD_READ_NODE_ID, 0, 0, ETH_ALEN, buf)
< 0) {
debug("Failed to read MAC address.\n");
return -1;
}
memcpy(enetaddr, buf, ETH_ALEN);
}
return 0;
}
static int asix_basic_reset(struct ueth_data *dev)
{
int embd_phy;
u16 rx_ctl;
if (asix_write_gpio(dev,
AX_GPIO_RSE | AX_GPIO_GPO_2 | AX_GPIO_GPO2EN, 5) < 0)
return -1;
/* 0x10 is the phy id of the embedded 10/100 ethernet phy */
embd_phy = ((asix_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0);
if (asix_write_cmd(dev, AX_CMD_SW_PHY_SELECT,
embd_phy, 0, 0, NULL) < 0) {
debug("Select PHY #1 failed\n");
return -1;
}
if (asix_sw_reset(dev, AX_SWRESET_IPPD | AX_SWRESET_PRL) < 0)
return -1;
if (asix_sw_reset(dev, AX_SWRESET_CLEAR) < 0)
return -1;
if (embd_phy) {
if (asix_sw_reset(dev, AX_SWRESET_IPRL) < 0)
return -1;
} else {
if (asix_sw_reset(dev, AX_SWRESET_PRTE) < 0)
return -1;
}
rx_ctl = asix_read_rx_ctl(dev);
debug("RX_CTL is 0x%04x after software reset\n", rx_ctl);
if (asix_write_rx_ctl(dev, 0x0000) < 0)
return -1;
rx_ctl = asix_read_rx_ctl(dev);
debug("RX_CTL is 0x%04x setting to 0x0000\n", rx_ctl);
dev->phy_id = asix_get_phy_addr(dev);
if (dev->phy_id < 0)
debug("Failed to read phy id\n");
asix_mdio_write(dev, dev->phy_id, MII_BMCR, BMCR_RESET);
asix_mdio_write(dev, dev->phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA);
mii_nway_restart(dev);
if (asix_write_medium_mode(dev, AX88772_MEDIUM_DEFAULT) < 0)
return -1;
if (asix_write_cmd(dev, AX_CMD_WRITE_IPG0,
AX88772_IPG0_DEFAULT | AX88772_IPG1_DEFAULT,
AX88772_IPG2_DEFAULT, 0, NULL) < 0) {
debug("Write IPG,IPG1,IPG2 failed\n");
return -1;
}
return 0;
}
static int asix_init_common(struct ueth_data *dev, uint8_t *enetaddr)
{
int timeout = 0;
#define TIMEOUT_RESOLUTION 50 /* ms */
int link_detected;
u32 ctl = AX_DEFAULT_RX_CTL;
debug("** %s()\n", __func__);
if ((dev->pusb_dev->descriptor.idVendor == ASIX_USB_VENDOR_ID) &&
(dev->pusb_dev->descriptor.idProduct == AX88772B_USB_PRODUCT_ID))
ctl |= AX_RX_HEADER_DEFAULT;
if (asix_write_rx_ctl(dev, ctl) < 0)
goto out_err;
if (asix_write_hwaddr_common(dev, enetaddr) < 0)
goto out_err;
do {
link_detected = asix_mdio_read(dev, dev->phy_id, MII_BMSR) &
BMSR_LSTATUS;
if (!link_detected) {
if (timeout == 0)
printf("Waiting for Ethernet connection... ");
udelay(TIMEOUT_RESOLUTION * 1000);
timeout += TIMEOUT_RESOLUTION;
}
} while (!link_detected && timeout < PHY_CONNECT_TIMEOUT);
if (link_detected) {
if (timeout != 0)
printf("done.\n");
} else {
printf("unable to connect.\n");
goto out_err;
}
/*
* Wait some more to avoid timeout on first transfer
* (e.g. EHCI timed out on TD - token=0x8008d80)
*/
mdelay(25);
return 0;
out_err:
return -1;
}
static int asix_send_common(struct ueth_data *dev, void *packet, int length)
{
int err;
u32 packet_len;
int actual_len;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, msg,
PKTSIZE + sizeof(packet_len));
debug("** %s(), len %d\n", __func__, length);
packet_len = (((length) ^ 0x0000ffff) << 16) + (length);
cpu_to_le32s(&packet_len);
memcpy(msg, &packet_len, sizeof(packet_len));
memcpy(msg + sizeof(packet_len), (void *)packet, length);
err = usb_bulk_msg(dev->pusb_dev,
usb_sndbulkpipe(dev->pusb_dev, dev->ep_out),
(void *)msg,
length + sizeof(packet_len),
&actual_len,
USB_BULK_SEND_TIMEOUT);
debug("Tx: len = %zu, actual = %u, err = %d\n",
length + sizeof(packet_len), actual_len, err);
return err;
}
#ifndef CONFIG_DM_ETH
/*
* Asix callbacks
*/
static int asix_init(struct eth_device *eth, bd_t *bd)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
return asix_init_common(dev, eth->enetaddr);
}
static int asix_send(struct eth_device *eth, void *packet, int length)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
return asix_send_common(dev, packet, length);
}
static int asix_recv(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, recv_buf, AX_RX_URB_SIZE);
unsigned char *buf_ptr;
int err;
int actual_len;
u32 packet_len;
debug("** %s()\n", __func__);
err = usb_bulk_msg(dev->pusb_dev,
usb_rcvbulkpipe(dev->pusb_dev, dev->ep_in),
(void *)recv_buf,
AX_RX_URB_SIZE,
&actual_len,
USB_BULK_RECV_TIMEOUT);
debug("Rx: len = %u, actual = %u, err = %d\n", AX_RX_URB_SIZE,
actual_len, err);
if (err != 0) {
debug("Rx: failed to receive\n");
return -1;
}
if (actual_len > AX_RX_URB_SIZE) {
debug("Rx: received too many bytes %d\n", actual_len);
return -1;
}
buf_ptr = recv_buf;
while (actual_len > 0) {
/*
* 1st 4 bytes contain the length of the actual data as two
* complementary 16-bit words. Extract the length of the data.
*/
if (actual_len < sizeof(packet_len)) {
debug("Rx: incomplete packet length\n");
return -1;
}
memcpy(&packet_len, buf_ptr, sizeof(packet_len));
le32_to_cpus(&packet_len);
if (((~packet_len >> 16) & 0x7ff) != (packet_len & 0x7ff)) {
debug("Rx: malformed packet length: %#x (%#x:%#x)\n",
packet_len, (~packet_len >> 16) & 0x7ff,
packet_len & 0x7ff);
return -1;
}
packet_len = packet_len & 0x7ff;
if (packet_len > actual_len - sizeof(packet_len)) {
debug("Rx: too large packet: %d\n", packet_len);
return -1;
}
if ((dev->pusb_dev->descriptor.idVendor ==
ASIX_USB_VENDOR_ID) &&
(dev->pusb_dev->descriptor.idProduct ==
AX88772B_USB_PRODUCT_ID))
buf_ptr += 2;
/* Notify net stack */
net_process_received_packet(buf_ptr + sizeof(packet_len),
packet_len);
/* Adjust for next iteration. Packets are padded to 16-bits */
if (packet_len & 1)
packet_len++;
actual_len -= sizeof(packet_len) + packet_len;
buf_ptr += sizeof(packet_len) + packet_len;
}
return err;
}
static void asix_halt(struct eth_device *eth)
{
debug("** %s()\n", __func__);
}
static int asix_write_hwaddr(struct eth_device *eth)
{
struct ueth_data *dev = (struct ueth_data *)eth->priv;
return asix_write_hwaddr_common(dev, eth->enetaddr);
}
/*
* Asix probing functions
*/
void asix_eth_before_probe(void)
{
curr_eth_dev = 0;
}
struct asix_dongle {
unsigned short vendor;
unsigned short product;
int flags;
};
static const struct asix_dongle asix_dongles[] = {
{ 0x05ac, 0x1402, FLAG_TYPE_AX88772 }, /* Apple USB Ethernet Adapter */
{ 0x07d1, 0x3c05, FLAG_TYPE_AX88772 }, /* D-Link DUB-E100 H/W Ver B1 */
{ 0x2001, 0x1a02, FLAG_TYPE_AX88772 }, /* D-Link DUB-E100 H/W Ver C1 */
/* Cables-to-Go USB Ethernet Adapter */
{ 0x0b95, 0x772a, FLAG_TYPE_AX88772 },
{ 0x0b95, 0x7720, FLAG_TYPE_AX88772 }, /* Trendnet TU2-ET100 V3.0R */
{ 0x0b95, 0x1720, FLAG_TYPE_AX88172 }, /* SMC */
{ 0x0db0, 0xa877, FLAG_TYPE_AX88772 }, /* MSI - ASIX 88772a */
{ 0x13b1, 0x0018, FLAG_TYPE_AX88172 }, /* Linksys 200M v2.1 */
{ 0x1557, 0x7720, FLAG_TYPE_AX88772 }, /* 0Q0 cable ethernet */
/* DLink DUB-E100 H/W Ver B1 Alternate */
{ 0x2001, 0x3c05, FLAG_TYPE_AX88772 },
/* ASIX 88772B */
{ 0x0b95, 0x772b, FLAG_TYPE_AX88772B | FLAG_EEPROM_MAC },
{ 0x0b95, 0x7e2b, FLAG_TYPE_AX88772B },
{ 0x0000, 0x0000, FLAG_NONE } /* END - Do not remove */
};
/* Probe to see if a new device is actually an asix device */
int asix_eth_probe(struct usb_device *dev, unsigned int ifnum,
struct ueth_data *ss)
{
struct usb_interface *iface;
struct usb_interface_descriptor *iface_desc;
int ep_in_found = 0, ep_out_found = 0;
int i;
/* let's examine the device now */
iface = &dev->config.if_desc[ifnum];
iface_desc = &dev->config.if_desc[ifnum].desc;
for (i = 0; asix_dongles[i].vendor != 0; i++) {
if (dev->descriptor.idVendor == asix_dongles[i].vendor &&
dev->descriptor.idProduct == asix_dongles[i].product)
/* Found a supported dongle */
break;
}
if (asix_dongles[i].vendor == 0)
return 0;
memset(ss, 0, sizeof(struct ueth_data));
/* At this point, we know we've got a live one */
debug("\n\nUSB Ethernet device detected: %#04x:%#04x\n",
dev->descriptor.idVendor, dev->descriptor.idProduct);
/* Initialize the ueth_data structure with some useful info */
ss->ifnum = ifnum;
ss->pusb_dev = dev;
ss->subclass = iface_desc->bInterfaceSubClass;
ss->protocol = iface_desc->bInterfaceProtocol;
/* alloc driver private */
ss->dev_priv = calloc(1, sizeof(struct asix_private));
if (!ss->dev_priv)
return 0;
((struct asix_private *)ss->dev_priv)->flags = asix_dongles[i].flags;
/*
* We are expecting a minimum of 3 endpoints - in, out (bulk), and
* int. We will ignore any others.
*/
for (i = 0; i < iface_desc->bNumEndpoints; i++) {
/* is it an BULK endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) {
u8 ep_addr = iface->ep_desc[i].bEndpointAddress;
if (ep_addr & USB_DIR_IN) {
if (!ep_in_found) {
ss->ep_in = ep_addr &
USB_ENDPOINT_NUMBER_MASK;
ep_in_found = 1;
}
} else {
if (!ep_out_found) {
ss->ep_out = ep_addr &
USB_ENDPOINT_NUMBER_MASK;
ep_out_found = 1;
}
}
}
/* is it an interrupt endpoint? */
if ((iface->ep_desc[i].bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT) {
ss->ep_int = iface->ep_desc[i].bEndpointAddress &
USB_ENDPOINT_NUMBER_MASK;
ss->irqinterval = iface->ep_desc[i].bInterval;
}
}
debug("Endpoints In %d Out %d Int %d\n",
ss->ep_in, ss->ep_out, ss->ep_int);
/* Do some basic sanity checks, and bail if we find a problem */
if (usb_set_interface(dev, iface_desc->bInterfaceNumber, 0) ||
!ss->ep_in || !ss->ep_out || !ss->ep_int) {
debug("Problems with device\n");
return 0;
}
dev->privptr = (void *)ss;
return 1;
}
int asix_eth_get_info(struct usb_device *dev, struct ueth_data *ss,
struct eth_device *eth)
{
struct asix_private *priv = (struct asix_private *)ss->dev_priv;
if (!eth) {
debug("%s: missing parameter.\n", __func__);
return 0;
}
sprintf(eth->name, "%s%d", ASIX_BASE_NAME, curr_eth_dev++);
eth->init = asix_init;
eth->send = asix_send;
eth->recv = asix_recv;
eth->halt = asix_halt;
if (!(priv->flags & FLAG_TYPE_AX88172))
eth->write_hwaddr = asix_write_hwaddr;
eth->priv = ss;
if (asix_basic_reset(ss))
return 0;
/* Get the MAC address */
if (asix_read_mac_common(ss, priv, eth->enetaddr))
return 0;
debug("MAC %pM\n", eth->enetaddr);
return 1;
}
#endif
#ifdef CONFIG_DM_ETH
static int asix_eth_start(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct asix_private *priv = dev_get_priv(dev);
return asix_init_common(&priv->ueth, pdata->enetaddr);
}
void asix_eth_stop(struct udevice *dev)
{
debug("** %s()\n", __func__);
}
int asix_eth_send(struct udevice *dev, void *packet, int length)
{
struct asix_private *priv = dev_get_priv(dev);
return asix_send_common(&priv->ueth, packet, length);
}
int asix_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct asix_private *priv = dev_get_priv(dev);
struct ueth_data *ueth = &priv->ueth;
uint8_t *ptr;
int ret, len;
u32 packet_len;
len = usb_ether_get_rx_bytes(ueth, &ptr);
debug("%s: first try, len=%d\n", __func__, len);
if (!len) {
if (!(flags & ETH_RECV_CHECK_DEVICE))
return -EAGAIN;
ret = usb_ether_receive(ueth, AX_RX_URB_SIZE);
if (ret == -EAGAIN)
return ret;
len = usb_ether_get_rx_bytes(ueth, &ptr);
debug("%s: second try, len=%d\n", __func__, len);
}
/*
* 1st 4 bytes contain the length of the actual data as two
* complementary 16-bit words. Extract the length of the data.
*/
if (len < sizeof(packet_len)) {
debug("Rx: incomplete packet length\n");
goto err;
}
memcpy(&packet_len, ptr, sizeof(packet_len));
le32_to_cpus(&packet_len);
if (((~packet_len >> 16) & 0x7ff) != (packet_len & 0x7ff)) {
debug("Rx: malformed packet length: %#x (%#x:%#x)\n",
packet_len, (~packet_len >> 16) & 0x7ff,
packet_len & 0x7ff);
goto err;
}
packet_len = packet_len & 0x7ff;
if (packet_len > len - sizeof(packet_len)) {
debug("Rx: too large packet: %d\n", packet_len);
goto err;
}
*packetp = ptr + sizeof(packet_len);
return packet_len;
err:
usb_ether_advance_rxbuf(ueth, -1);
return -EINVAL;
}
static int asix_free_pkt(struct udevice *dev, uchar *packet, int packet_len)
{
struct asix_private *priv = dev_get_priv(dev);
if (packet_len & 1)
packet_len++;
usb_ether_advance_rxbuf(&priv->ueth, sizeof(u32) + packet_len);
return 0;
}
int asix_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct asix_private *priv = dev_get_priv(dev);
if (priv->flags & FLAG_TYPE_AX88172)
return -ENOSYS;
return asix_write_hwaddr_common(&priv->ueth, pdata->enetaddr);
}
static int asix_eth_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct asix_private *priv = dev_get_priv(dev);
struct ueth_data *ss = &priv->ueth;
int ret;
priv->flags = dev->driver_data;
ret = usb_ether_register(dev, ss, AX_RX_URB_SIZE);
if (ret)
return ret;
ret = asix_basic_reset(ss);
if (ret)
goto err;
/* Get the MAC address */
ret = asix_read_mac_common(ss, priv, pdata->enetaddr);
if (ret)
goto err;
debug("MAC %pM\n", pdata->enetaddr);
return 0;
err:
return usb_ether_deregister(ss);
}
static const struct eth_ops asix_eth_ops = {
.start = asix_eth_start,
.send = asix_eth_send,
.recv = asix_eth_recv,
.free_pkt = asix_free_pkt,
.stop = asix_eth_stop,
.write_hwaddr = asix_write_hwaddr,
};
U_BOOT_DRIVER(asix_eth) = {
.name = "asix_eth",
.id = UCLASS_ETH,
.probe = asix_eth_probe,
.ops = &asix_eth_ops,
.priv_auto_alloc_size = sizeof(struct asix_private),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};
static const struct usb_device_id asix_eth_id_table[] = {
/* Apple USB Ethernet Adapter */
{ USB_DEVICE(0x05ac, 0x1402), .driver_info = FLAG_TYPE_AX88772 },
/* D-Link DUB-E100 H/W Ver B1 */
{ USB_DEVICE(0x07d1, 0x3c05), .driver_info = FLAG_TYPE_AX88772 },
/* D-Link DUB-E100 H/W Ver C1 */
{ USB_DEVICE(0x2001, 0x1a02), .driver_info = FLAG_TYPE_AX88772 },
/* Cables-to-Go USB Ethernet Adapter */
{ USB_DEVICE(0x0b95, 0x772a), .driver_info = FLAG_TYPE_AX88772 },
/* Trendnet TU2-ET100 V3.0R */
{ USB_DEVICE(0x0b95, 0x7720), .driver_info = FLAG_TYPE_AX88772 },
/* SMC */
{ USB_DEVICE(0x0b95, 0x1720), .driver_info = FLAG_TYPE_AX88172 },
/* MSI - ASIX 88772a */
{ USB_DEVICE(0x0db0, 0xa877), .driver_info = FLAG_TYPE_AX88772 },
/* Linksys 200M v2.1 */
{ USB_DEVICE(0x13b1, 0x0018), .driver_info = FLAG_TYPE_AX88172 },
/* 0Q0 cable ethernet */
{ USB_DEVICE(0x1557, 0x7720), .driver_info = FLAG_TYPE_AX88772 },
/* DLink DUB-E100 H/W Ver B1 Alternate */
{ USB_DEVICE(0x2001, 0x3c05), .driver_info = FLAG_TYPE_AX88772 },
/* ASIX 88772B */
{ USB_DEVICE(0x0b95, 0x772b),
.driver_info = FLAG_TYPE_AX88772B | FLAG_EEPROM_MAC },
{ USB_DEVICE(0x0b95, 0x7e2b), .driver_info = FLAG_TYPE_AX88772B },
{ } /* Terminating entry */
};
U_BOOT_USB_DEVICE(asix_eth, asix_eth_id_table);
#endif