Jetpack/u-boot/drivers/thermal/imx_thermal.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

273 lines
7.6 KiB
C

/*
* (C) Copyright 2014 Freescale Semiconductor, Inc.
* Author: Nitin Garg <nitin.garg@freescale.com>
* Ye Li <Ye.Li@freescale.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <div64.h>
#include <fuse.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <thermal.h>
#include <imx_thermal.h>
/* board will busyloop until this many degrees C below CPU max temperature */
#define TEMPERATURE_HOT_DELTA 5 /* CPU maxT - 5C */
#define FACTOR0 10000000
#define FACTOR1 15976
#define FACTOR2 4297157
#define MEASURE_FREQ 327
#define TEMPERATURE_MIN -40
#define TEMPERATURE_HOT 85
#define TEMPERATURE_MAX 125
#define TEMPSENSE0_TEMP_CNT_SHIFT 8
#define TEMPSENSE0_TEMP_CNT_MASK (0xfff << TEMPSENSE0_TEMP_CNT_SHIFT)
#define TEMPSENSE0_FINISHED (1 << 2)
#define TEMPSENSE0_MEASURE_TEMP (1 << 1)
#define TEMPSENSE0_POWER_DOWN (1 << 0)
#define MISC0_REFTOP_SELBIASOFF (1 << 3)
#define TEMPSENSE1_MEASURE_FREQ 0xffff
struct thermal_data {
unsigned int fuse;
int critical;
int minc;
int maxc;
};
#if defined(CONFIG_MX6)
static int read_cpu_temperature(struct udevice *dev)
{
int temperature;
unsigned int reg, n_meas;
const struct imx_thermal_plat *pdata = dev_get_platdata(dev);
struct anatop_regs *anatop = (struct anatop_regs *)pdata->regs;
struct thermal_data *priv = dev_get_priv(dev);
u32 fuse = priv->fuse;
int t1, n1;
u32 c1, c2;
u64 temp64;
/*
* Sensor data layout:
* [31:20] - sensor value @ 25C
* We use universal formula now and only need sensor value @ 25C
* slope = 0.4297157 - (0.0015976 * 25C fuse)
*/
n1 = fuse >> 20;
t1 = 25; /* t1 always 25C */
/*
* Derived from linear interpolation:
* slope = 0.4297157 - (0.0015976 * 25C fuse)
* slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0
* (Nmeas - n1) / (Tmeas - t1) = slope
* We want to reduce this down to the minimum computation necessary
* for each temperature read. Also, we want Tmeas in millicelsius
* and we don't want to lose precision from integer division. So...
* Tmeas = (Nmeas - n1) / slope + t1
* milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1
* milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1
* Let constant c1 = (-1000 / slope)
* milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1
* Let constant c2 = n1 *c1 + 1000 * t1
* milli_Tmeas = c2 - Nmeas * c1
*/
temp64 = FACTOR0;
temp64 *= 1000;
do_div(temp64, FACTOR1 * n1 - FACTOR2);
c1 = temp64;
c2 = n1 * c1 + 1000 * t1;
/*
* now we only use single measure, every time we read
* the temperature, we will power on/down anadig thermal
* module
*/
writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_clr);
writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set);
/* setup measure freq */
reg = readl(&anatop->tempsense1);
reg &= ~TEMPSENSE1_MEASURE_FREQ;
reg |= MEASURE_FREQ;
writel(reg, &anatop->tempsense1);
/* start the measurement process */
writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_clr);
writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr);
writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_set);
/* make sure that the latest temp is valid */
while ((readl(&anatop->tempsense0) &
TEMPSENSE0_FINISHED) == 0)
udelay(10000);
/* read temperature count */
reg = readl(&anatop->tempsense0);
n_meas = (reg & TEMPSENSE0_TEMP_CNT_MASK)
>> TEMPSENSE0_TEMP_CNT_SHIFT;
writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr);
/* milli_Tmeas = c2 - Nmeas * c1 */
temperature = (long)(c2 - n_meas * c1)/1000;
/* power down anatop thermal sensor */
writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_set);
writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_clr);
return temperature;
}
#elif defined(CONFIG_MX7)
static int read_cpu_temperature(struct udevice *dev)
{
unsigned int reg, tmp;
unsigned int raw_25c, te1;
int temperature;
unsigned int *priv = dev_get_priv(dev);
u32 fuse = *priv;
struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *)
ANATOP_BASE_ADDR;
/*
* fuse data layout:
* [31:21] sensor value @ 25C
* [20:18] hot temperature value
* [17:9] sensor value of room
* [8:0] sensor value of hot
*/
raw_25c = fuse >> 21;
if (raw_25c == 0)
raw_25c = 25;
te1 = (fuse >> 9) & 0x1ff;
/*
* now we only use single measure, every time we read
* the temperature, we will power on/down anadig thermal
* module
*/
writel(TEMPMON_HW_ANADIG_TEMPSENSE1_POWER_DOWN_MASK, &ccm_anatop->tempsense1_clr);
writel(PMU_REF_REFTOP_SELFBIASOFF_MASK, &ccm_anatop->ref_set);
/* write measure freq */
reg = readl(&ccm_anatop->tempsense1);
reg &= ~TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_FREQ_MASK;
reg |= TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_FREQ(MEASURE_FREQ);
writel(reg, &ccm_anatop->tempsense1);
writel(TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_TEMP_MASK, &ccm_anatop->tempsense1_clr);
writel(TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK, &ccm_anatop->tempsense1_clr);
writel(TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_TEMP_MASK, &ccm_anatop->tempsense1_set);
if (soc_rev() >= CHIP_REV_1_1) {
while ((readl(&ccm_anatop->tempsense1) &
TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK) == 0)
;
reg = readl(&ccm_anatop->tempsense1);
tmp = (reg & TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_MASK)
>> TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_SHIFT;
} else {
/*
* Since we can not rely on finish bit, use 10ms
* delay to get temperature. From RM, 17us is
* enough to get data, but to gurantee to get
* the data, delay 10ms here.
*/
udelay(10000);
reg = readl(&ccm_anatop->tempsense1);
tmp = (reg & TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_MASK)
>> TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_SHIFT;
}
writel(TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK, &ccm_anatop->tempsense1_clr);
/* power down anatop thermal sensor */
writel(TEMPMON_HW_ANADIG_TEMPSENSE1_POWER_DOWN_MASK, &ccm_anatop->tempsense1_set);
writel(PMU_REF_REFTOP_SELFBIASOFF_MASK, &ccm_anatop->ref_clr);
/* Single point */
temperature = tmp - (te1 - raw_25c);
return temperature;
}
#endif
int imx_thermal_get_temp(struct udevice *dev, int *temp)
{
struct thermal_data *priv = dev_get_priv(dev);
int cpu_tmp = 0;
cpu_tmp = read_cpu_temperature(dev);
while (cpu_tmp >= priv->critical) {
printf("CPU Temperature (%dC) too close to max (%dC)",
cpu_tmp, priv->maxc);
puts(" waiting...\n");
udelay(5000000);
cpu_tmp = read_cpu_temperature(dev);
}
*temp = cpu_tmp;
return 0;
}
static const struct dm_thermal_ops imx_thermal_ops = {
.get_temp = imx_thermal_get_temp,
};
static int imx_thermal_probe(struct udevice *dev)
{
unsigned int fuse = ~0;
const struct imx_thermal_plat *pdata = dev_get_platdata(dev);
struct thermal_data *priv = dev_get_priv(dev);
/* Read Temperature calibration data fuse */
fuse_read(pdata->fuse_bank, pdata->fuse_word, &fuse);
if (is_soc_type(MXC_SOC_MX6)) {
/* Check for valid fuse */
if (fuse == 0 || fuse == ~0) {
debug("CPU: Thermal invalid data, fuse: 0x%x\n",
fuse);
return -EPERM;
}
} else if (is_soc_type(MXC_SOC_MX7)) {
/* No Calibration data in FUSE? */
if ((fuse & 0x3ffff) == 0)
return -EPERM;
/* We do not support 105C TE2 */
if (((fuse & 0x1c0000) >> 18) == 0x6)
return -EPERM;
}
/* set critical cooling temp */
get_cpu_temp_grade(&priv->minc, &priv->maxc);
priv->critical = priv->maxc - TEMPERATURE_HOT_DELTA;
priv->fuse = fuse;
enable_thermal_clk();
return 0;
}
U_BOOT_DRIVER(imx_thermal) = {
.name = "imx_thermal",
.id = UCLASS_THERMAL,
.ops = &imx_thermal_ops,
.probe = imx_thermal_probe,
.priv_auto_alloc_size = sizeof(struct thermal_data),
.flags = DM_FLAG_PRE_RELOC,
};