Jetpack/u-boot/drivers/net/mvneta.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

1687 lines
47 KiB
C

/*
* Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
*
* U-Boot version:
* Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
*
* Based on the Linux version which is:
* Copyright (C) 2012 Marvell
*
* Rami Rosen <rosenr@marvell.com>
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <dm.h>
#include <net.h>
#include <netdev.h>
#include <config.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <phy.h>
#include <miiphy.h>
#include <watchdog.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <linux/compat.h>
#include <linux/mbus.h>
DECLARE_GLOBAL_DATA_PTR;
#if !defined(CONFIG_PHYLIB)
# error Marvell mvneta requires PHYLIB
#endif
/* Some linux -> U-Boot compatibility stuff */
#define netdev_err(dev, fmt, args...) \
printf(fmt, ##args)
#define netdev_warn(dev, fmt, args...) \
printf(fmt, ##args)
#define netdev_info(dev, fmt, args...) \
printf(fmt, ##args)
#define CONFIG_NR_CPUS 1
#define ETH_HLEN 14 /* Total octets in header */
/* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
#define WRAP (2 + ETH_HLEN + 4 + 32)
#define MTU 1500
#define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
#define MVNETA_SMI_TIMEOUT 10000
/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
#define MVNETA_PORT_RX_RESET 0x1cc0
#define MVNETA_PORT_RX_DMA_RESET BIT(0)
#define MVNETA_PHY_ADDR 0x2000
#define MVNETA_PHY_ADDR_MASK 0x1f
#define MVNETA_SMI 0x2004
#define MVNETA_PHY_REG_MASK 0x1f
/* SMI register fields */
#define MVNETA_SMI_DATA_OFFS 0 /* Data */
#define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
#define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
#define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
#define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
#define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
#define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
#define MVNETA_SMI_BUSY (1 << 28) /* Busy */
#define MVNETA_MBUS_RETRY 0x2010
#define MVNETA_UNIT_INTR_CAUSE 0x2080
#define MVNETA_UNIT_CONTROL 0x20B0
#define MVNETA_PHY_POLLING_ENABLE BIT(1)
#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE 0x2290
#define MVNETA_PORT_CONFIG 0x2400
#define MVNETA_UNI_PROMISC_MODE BIT(0)
#define MVNETA_DEF_RXQ(q) ((q) << 1)
#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
MVNETA_DEF_RXQ_ARP(q) | \
MVNETA_DEF_RXQ_TCP(q) | \
MVNETA_DEF_RXQ_UDP(q) | \
MVNETA_DEF_RXQ_BPDU(q) | \
MVNETA_TX_UNSET_ERR_SUM | \
MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND 0x2404
#define MVNETA_MAC_ADDR_LOW 0x2414
#define MVNETA_MAC_ADDR_HIGH 0x2418
#define MVNETA_SDMA_CONFIG 0x241c
#define MVNETA_SDMA_BRST_SIZE_16 4
#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
#define MVNETA_RX_NO_DATA_SWAP BIT(4)
#define MVNETA_TX_NO_DATA_SWAP BIT(5)
#define MVNETA_DESC_SWAP BIT(6)
#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
#define MVNETA_PORT_STATUS 0x2444
#define MVNETA_TX_IN_PRGRS BIT(1)
#define MVNETA_TX_FIFO_EMPTY BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
#define MVNETA_SERDES_CFG 0x24A0
#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
#define MVNETA_QSGMII_SERDES_PROTO 0x0667
#define MVNETA_TYPE_PRIO 0x24bc
#define MVNETA_FORCE_UNI BIT(21)
#define MVNETA_TXQ_CMD_1 0x24e4
#define MVNETA_TXQ_CMD 0x2448
#define MVNETA_TXQ_DISABLE_SHIFT 8
#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
#define MVNETA_ACC_MODE 0x2500
#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
/* Exception Interrupt Port/Queue Cause register */
#define MVNETA_INTR_NEW_CAUSE 0x25a0
#define MVNETA_INTR_NEW_MASK 0x25a4
/* bits 0..7 = TXQ SENT, one bit per queue.
* bits 8..15 = RXQ OCCUP, one bit per queue.
* bits 16..23 = RXQ FREE, one bit per queue.
* bit 29 = OLD_REG_SUM, see old reg ?
* bit 30 = TX_ERR_SUM, one bit for 4 ports
* bit 31 = MISC_SUM, one bit for 4 ports
*/
#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
#define MVNETA_INTR_OLD_CAUSE 0x25a8
#define MVNETA_INTR_OLD_MASK 0x25ac
/* Data Path Port/Queue Cause Register */
#define MVNETA_INTR_MISC_CAUSE 0x25b0
#define MVNETA_INTR_MISC_MASK 0x25b4
#define MVNETA_INTR_ENABLE 0x25b8
#define MVNETA_RXQ_CMD 0x2680
#define MVNETA_RXQ_DISABLE_SHIFT 8
#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0 0x2c00
#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
#define MVNETA_GMAC_CTRL_2 0x2c08
#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
#define MVNETA_GMAC2_PORT_RGMII BIT(4)
#define MVNETA_GMAC2_PORT_RESET BIT(6)
#define MVNETA_GMAC_STATUS 0x2c10
#define MVNETA_GMAC_LINK_UP BIT(0)
#define MVNETA_GMAC_SPEED_1000 BIT(1)
#define MVNETA_GMAC_SPEED_100 BIT(2)
#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
#define MVNETA_MIB_COUNTERS_BASE 0x3080
#define MVNETA_MIB_LATE_COLLISION 0x7c
#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
#define MVNETA_DA_FILT_OTH_MCAST 0x3500
#define MVNETA_DA_FILT_UCAST_BASE 0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
#define MVNETA_TXQ_DEC_SENT_SHIFT 16
#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
#define MVNETA_TXQ_SENT_DESC_SHIFT 16
#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
#define MVNETA_PORT_TX_RESET 0x3cf0
#define MVNETA_PORT_TX_DMA_RESET BIT(0)
#define MVNETA_TX_MTU 0x3e0c
#define MVNETA_TX_TOKEN_SIZE 0x3e14
#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index) \
(((index) < (q)->last_desc) ? ((index) + 1) : 0)
/* Various constants */
/* Coalescing */
#define MVNETA_TXDONE_COAL_PKTS 16
#define MVNETA_RX_COAL_PKTS 32
#define MVNETA_RX_COAL_USEC 100
/* The two bytes Marvell header. Either contains a special value used
* by Marvell switches when a specific hardware mode is enabled (not
* supported by this driver) or is filled automatically by zeroes on
* the RX side. Those two bytes being at the front of the Ethernet
* header, they allow to have the IP header aligned on a 4 bytes
* boundary automatically: the hardware skips those two bytes on its
* own.
*/
#define MVNETA_MH_SIZE 2
#define MVNETA_VLAN_TAG_LEN 4
#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
#define MVNETA_TX_CSUM_MAX_SIZE 9800
#define MVNETA_ACC_MODE_EXT 1
/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
#define MVNETA_TX_MTU_MAX 0x3ffff
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 16
/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 16
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE 32
struct mvneta_port {
void __iomem *base;
struct mvneta_rx_queue *rxqs;
struct mvneta_tx_queue *txqs;
u8 mcast_count[256];
u16 tx_ring_size;
u16 rx_ring_size;
phy_interface_t phy_interface;
unsigned int link;
unsigned int duplex;
unsigned int speed;
int init;
int phyaddr;
struct phy_device *phydev;
struct mii_dev *bus;
};
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVNETA_TX_L3_OFF_SHIFT 0
#define MVNETA_TX_IP_HLEN_SHIFT 8
#define MVNETA_TX_L4_UDP BIT(16)
#define MVNETA_TX_L3_IP6 BIT(17)
#define MVNETA_TXD_IP_CSUM BIT(18)
#define MVNETA_TXD_Z_PAD BIT(19)
#define MVNETA_TXD_L_DESC BIT(20)
#define MVNETA_TXD_F_DESC BIT(21)
#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
MVNETA_TXD_L_DESC | \
MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL BIT(30)
#define MVNETA_TX_L4_CSUM_NOT BIT(31)
#define MVNETA_RXD_ERR_CRC 0x0
#define MVNETA_RXD_ERR_SUMMARY BIT(16)
#define MVNETA_RXD_ERR_OVERRUN BIT(17)
#define MVNETA_RXD_ERR_LEN BIT(18)
#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4 BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK BIT(30)
struct mvneta_tx_desc {
u32 command; /* Options used by HW for packet transmitting.*/
u16 reserverd1; /* csum_l4 (for future use) */
u16 data_size; /* Data size of transmitted packet in bytes */
u32 buf_phys_addr; /* Physical addr of transmitted buffer */
u32 reserved2; /* hw_cmd - (for future use, PMT) */
u32 reserved3[4]; /* Reserved - (for future use) */
};
struct mvneta_rx_desc {
u32 status; /* Info about received packet */
u16 reserved1; /* pnc_info - (for future use, PnC) */
u16 data_size; /* Size of received packet in bytes */
u32 buf_phys_addr; /* Physical address of the buffer */
u32 reserved2; /* pnc_flow_id (for future use, PnC) */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved3; /* prefetch_cmd, for future use */
u16 reserved4; /* csum_l4 - (for future use, PnC) */
u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
};
struct mvneta_tx_queue {
/* Number of this TX queue, in the range 0-7 */
u8 id;
/* Number of TX DMA descriptors in the descriptor ring */
int size;
/* Index of last TX DMA descriptor that was inserted */
int txq_put_index;
/* Index of the TX DMA descriptor to be cleaned up */
int txq_get_index;
/* Virtual address of the TX DMA descriptors array */
struct mvneta_tx_desc *descs;
/* DMA address of the TX DMA descriptors array */
dma_addr_t descs_phys;
/* Index of the last TX DMA descriptor */
int last_desc;
/* Index of the next TX DMA descriptor to process */
int next_desc_to_proc;
};
struct mvneta_rx_queue {
/* rx queue number, in the range 0-7 */
u8 id;
/* num of rx descriptors in the rx descriptor ring */
int size;
/* Virtual address of the RX DMA descriptors array */
struct mvneta_rx_desc *descs;
/* DMA address of the RX DMA descriptors array */
dma_addr_t descs_phys;
/* Index of the last RX DMA descriptor */
int last_desc;
/* Index of the next RX DMA descriptor to process */
int next_desc_to_proc;
};
/* U-Boot doesn't use the queues, so set the number to 1 */
static int rxq_number = 1;
static int txq_number = 1;
static int rxq_def;
struct buffer_location {
struct mvneta_tx_desc *tx_descs;
struct mvneta_rx_desc *rx_descs;
u32 rx_buffers;
};
/*
* All 4 interfaces use the same global buffer, since only one interface
* can be enabled at once
*/
static struct buffer_location buffer_loc;
/*
* Page table entries are set to 1MB, or multiples of 1MB
* (not < 1MB). driver uses less bd's so use 1MB bdspace.
*/
#define BD_SPACE (1 << 20)
/* Utility/helper methods */
/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
writel(data, pp->base + offset);
}
/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
return readl(pp->base + offset);
}
/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
int i;
/* Perform dummy reads from MIB counters */
for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
}
/* Rx descriptors helper methods */
/* Checks whether the RX descriptor having this status is both the first
* and the last descriptor for the RX packet. Each RX packet is currently
* received through a single RX descriptor, so not having each RX
* descriptor with its first and last bits set is an error
*/
static int mvneta_rxq_desc_is_first_last(u32 status)
{
return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
MVNETA_RXD_FIRST_LAST_DESC;
}
/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int ndescs)
{
/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
* be added at once
*/
while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
(MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
}
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
(ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}
/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}
/* Update num of rx desc called upon return from rx path or
* from mvneta_rxq_drop_pkts().
*/
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int rx_done, int rx_filled)
{
u32 val;
if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
val = rx_done |
(rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
return;
}
/* Only 255 descriptors can be added at once */
while ((rx_done > 0) || (rx_filled > 0)) {
if (rx_done <= 0xff) {
val = rx_done;
rx_done = 0;
} else {
val = 0xff;
rx_done -= 0xff;
}
if (rx_filled <= 0xff) {
val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
rx_filled = 0;
} else {
val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
rx_filled -= 0xff;
}
mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
}
}
/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
return rxq->descs + rx_desc;
}
/* Tx descriptors helper methods */
/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
struct mvneta_tx_queue *txq,
int pend_desc)
{
u32 val;
/* Only 255 descriptors can be added at once ; Assume caller
* process TX desriptors in quanta less than 256
*/
val = pend_desc;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}
/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq,
int buf_size)
{
u32 val;
val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
int queue;
u32 q_map;
/* Enable all initialized TXs. */
mvneta_mib_counters_clear(pp);
q_map = 0;
for (queue = 0; queue < txq_number; queue++) {
struct mvneta_tx_queue *txq = &pp->txqs[queue];
if (txq->descs != NULL)
q_map |= (1 << queue);
}
mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
/* Enable all initialized RXQs. */
q_map = 0;
for (queue = 0; queue < rxq_number; queue++) {
struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
if (rxq->descs != NULL)
q_map |= (1 << queue);
}
mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
}
/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
u32 val;
int count;
/* Stop Rx port activity. Check port Rx activity. */
val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
/* Issue stop command for active channels only */
if (val != 0)
mvreg_write(pp, MVNETA_RXQ_CMD,
val << MVNETA_RXQ_DISABLE_SHIFT);
/* Wait for all Rx activity to terminate. */
count = 0;
do {
if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(pp->dev,
"TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
val);
break;
}
mdelay(1);
val = mvreg_read(pp, MVNETA_RXQ_CMD);
} while (val & 0xff);
/* Stop Tx port activity. Check port Tx activity. Issue stop
* command for active channels only
*/
val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
if (val != 0)
mvreg_write(pp, MVNETA_TXQ_CMD,
(val << MVNETA_TXQ_DISABLE_SHIFT));
/* Wait for all Tx activity to terminate. */
count = 0;
do {
if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(pp->dev,
"TIMEOUT for TX stopped status=0x%08x\n",
val);
break;
}
mdelay(1);
/* Check TX Command reg that all Txqs are stopped */
val = mvreg_read(pp, MVNETA_TXQ_CMD);
} while (val & 0xff);
/* Double check to verify that TX FIFO is empty */
count = 0;
do {
if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
netdev_warn(pp->dev,
"TX FIFO empty timeout status=0x08%x\n",
val);
break;
}
mdelay(1);
val = mvreg_read(pp, MVNETA_PORT_STATUS);
} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
(val & MVNETA_TX_IN_PRGRS));
udelay(200);
}
/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
u32 val;
/* Enable port */
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val |= MVNETA_GMAC0_PORT_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}
/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
u32 val;
/* Reset the Enable bit in the Serial Control Register */
val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
val &= ~MVNETA_GMAC0_PORT_ENABLE;
mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
udelay(200);
}
/* Multicast tables methods */
/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
val = 0;
} else {
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}
/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
val = 0;
} else {
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xfc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
}
/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
int offset;
u32 val;
if (queue == -1) {
memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
val = 0;
} else {
memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
val = 0x1 | (queue << 1);
val |= (val << 24) | (val << 16) | (val << 8);
}
for (offset = 0; offset <= 0xfc; offset += 4)
mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}
/* This method sets defaults to the NETA port:
* Clears interrupt Cause and Mask registers.
* Clears all MAC tables.
* Sets defaults to all registers.
* Resets RX and TX descriptor rings.
* Resets PHY.
* This method can be called after mvneta_port_down() to return the port
* settings to defaults.
*/
static void mvneta_defaults_set(struct mvneta_port *pp)
{
int cpu;
int queue;
u32 val;
/* Clear all Cause registers */
mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
/* Mask all interrupts */
mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
/* Enable MBUS Retry bit16 */
mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
/* Set CPU queue access map - all CPUs have access to all RX
* queues and to all TX queues
*/
for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
mvreg_write(pp, MVNETA_CPU_MAP(cpu),
(MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
/* Reset RX and TX DMAs */
mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
/* Disable Legacy WRR, Disable EJP, Release from reset */
mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
for (queue = 0; queue < txq_number; queue++) {
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
}
mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
/* Set Port Acceleration Mode */
val = MVNETA_ACC_MODE_EXT;
mvreg_write(pp, MVNETA_ACC_MODE, val);
/* Update val of portCfg register accordingly with all RxQueue types */
val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
mvreg_write(pp, MVNETA_PORT_CONFIG, val);
val = 0;
mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
/* Build PORT_SDMA_CONFIG_REG */
val = 0;
/* Default burst size */
val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
/* Assign port SDMA configuration */
mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
/* Enable PHY polling in hardware for U-Boot */
val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
val |= MVNETA_PHY_POLLING_ENABLE;
mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
mvneta_set_ucast_table(pp, -1);
mvneta_set_special_mcast_table(pp, -1);
mvneta_set_other_mcast_table(pp, -1);
}
/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
int queue)
{
unsigned int unicast_reg;
unsigned int tbl_offset;
unsigned int reg_offset;
/* Locate the Unicast table entry */
last_nibble = (0xf & last_nibble);
/* offset from unicast tbl base */
tbl_offset = (last_nibble / 4) * 4;
/* offset within the above reg */
reg_offset = last_nibble % 4;
unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
if (queue == -1) {
/* Clear accepts frame bit at specified unicast DA tbl entry */
unicast_reg &= ~(0xff << (8 * reg_offset));
} else {
unicast_reg &= ~(0xff << (8 * reg_offset));
unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
}
mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}
/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
int queue)
{
unsigned int mac_h;
unsigned int mac_l;
if (queue != -1) {
mac_l = (addr[4] << 8) | (addr[5]);
mac_h = (addr[0] << 24) | (addr[1] << 16) |
(addr[2] << 8) | (addr[3] << 0);
mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
}
/* Accept frames of this address */
mvneta_set_ucast_addr(pp, addr[5], queue);
}
/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
u32 phys_addr, u32 cookie)
{
rx_desc->buf_cookie = cookie;
rx_desc->buf_phys_addr = phys_addr;
}
/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
struct mvneta_tx_queue *txq,
int sent_desc)
{
u32 val;
/* Only 255 TX descriptors can be updated at once */
while (sent_desc > 0xff) {
val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
sent_desc = sent_desc - 0xff;
}
val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}
/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
u32 val;
int sent_desc;
val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
MVNETA_TXQ_SENT_DESC_SHIFT;
return sent_desc;
}
/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
struct mvneta_rx_desc *rx_desc)
{
u32 status = rx_desc->status;
if (!mvneta_rxq_desc_is_first_last(status)) {
netdev_err(pp->dev,
"bad rx status %08x (buffer oversize), size=%d\n",
status, rx_desc->data_size);
return;
}
switch (status & MVNETA_RXD_ERR_CODE_MASK) {
case MVNETA_RXD_ERR_CRC:
netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_OVERRUN:
netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_LEN:
netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
status, rx_desc->data_size);
break;
case MVNETA_RXD_ERR_RESOURCE:
netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
status, rx_desc->data_size);
break;
}
}
static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
int rxq)
{
return &pp->rxqs[rxq];
}
/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
int rx_done;
rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
if (rx_done)
mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
}
/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
int num)
{
int i;
for (i = 0; i < num; i++) {
u32 addr;
/* U-Boot special: Fill in the rx buffer addresses */
addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
}
/* Add this number of RX descriptors as non occupied (ready to
* get packets)
*/
mvneta_rxq_non_occup_desc_add(pp, rxq, i);
return 0;
}
/* Rx/Tx queue initialization/cleanup methods */
/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
rxq->size = pp->rx_ring_size;
/* Allocate memory for RX descriptors */
rxq->descs_phys = (dma_addr_t)rxq->descs;
if (rxq->descs == NULL)
return -ENOMEM;
rxq->last_desc = rxq->size - 1;
/* Set Rx descriptors queue starting address */
mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
/* Fill RXQ with buffers from RX pool */
mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
mvneta_rxq_fill(pp, rxq, rxq->size);
return 0;
}
/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
struct mvneta_rx_queue *rxq)
{
mvneta_rxq_drop_pkts(pp, rxq);
rxq->descs = NULL;
rxq->last_desc = 0;
rxq->next_desc_to_proc = 0;
rxq->descs_phys = 0;
}
/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
txq->size = pp->tx_ring_size;
/* Allocate memory for TX descriptors */
txq->descs_phys = (u32)txq->descs;
if (txq->descs == NULL)
return -ENOMEM;
txq->last_desc = txq->size - 1;
/* Set maximum bandwidth for enabled TXQs */
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
/* Set Tx descriptors queue starting address */
mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
return 0;
}
/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_deinit(struct mvneta_port *pp,
struct mvneta_tx_queue *txq)
{
txq->descs = NULL;
txq->last_desc = 0;
txq->next_desc_to_proc = 0;
txq->descs_phys = 0;
/* Set minimum bandwidth for disabled TXQs */
mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
/* Set Tx descriptors queue starting address and size */
mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}
/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < txq_number; queue++)
mvneta_txq_deinit(pp, &pp->txqs[queue]);
}
/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < rxq_number; queue++)
mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
}
/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < rxq_number; queue++) {
int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
if (err) {
netdev_err(pp->dev, "%s: can't create rxq=%d\n",
__func__, queue);
mvneta_cleanup_rxqs(pp);
return err;
}
}
return 0;
}
/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
int queue;
for (queue = 0; queue < txq_number; queue++) {
int err = mvneta_txq_init(pp, &pp->txqs[queue]);
if (err) {
netdev_err(pp->dev, "%s: can't create txq=%d\n",
__func__, queue);
mvneta_cleanup_txqs(pp);
return err;
}
}
return 0;
}
static void mvneta_start_dev(struct mvneta_port *pp)
{
/* start the Rx/Tx activity */
mvneta_port_enable(pp);
}
static void mvneta_adjust_link(struct udevice *dev)
{
struct mvneta_port *pp = dev_get_priv(dev);
struct phy_device *phydev = pp->phydev;
int status_change = 0;
if (phydev->link) {
if ((pp->speed != phydev->speed) ||
(pp->duplex != phydev->duplex)) {
u32 val;
val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
MVNETA_GMAC_CONFIG_GMII_SPEED |
MVNETA_GMAC_CONFIG_FULL_DUPLEX |
MVNETA_GMAC_AN_SPEED_EN |
MVNETA_GMAC_AN_DUPLEX_EN);
if (phydev->duplex)
val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
if (phydev->speed == SPEED_1000)
val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
else
val |= MVNETA_GMAC_CONFIG_MII_SPEED;
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
pp->duplex = phydev->duplex;
pp->speed = phydev->speed;
}
}
if (phydev->link != pp->link) {
if (!phydev->link) {
pp->duplex = -1;
pp->speed = 0;
}
pp->link = phydev->link;
status_change = 1;
}
if (status_change) {
if (phydev->link) {
u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
val |= (MVNETA_GMAC_FORCE_LINK_PASS |
MVNETA_GMAC_FORCE_LINK_DOWN);
mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
mvneta_port_up(pp);
} else {
mvneta_port_down(pp);
}
}
}
static int mvneta_open(struct udevice *dev)
{
struct mvneta_port *pp = dev_get_priv(dev);
int ret;
ret = mvneta_setup_rxqs(pp);
if (ret)
return ret;
ret = mvneta_setup_txqs(pp);
if (ret)
return ret;
mvneta_adjust_link(dev);
mvneta_start_dev(pp);
return 0;
}
/* Initialize hw */
static int mvneta_init2(struct mvneta_port *pp)
{
int queue;
/* Disable port */
mvneta_port_disable(pp);
/* Set port default values */
mvneta_defaults_set(pp);
pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
GFP_KERNEL);
if (!pp->txqs)
return -ENOMEM;
/* U-Boot special: use preallocated area */
pp->txqs[0].descs = buffer_loc.tx_descs;
/* Initialize TX descriptor rings */
for (queue = 0; queue < txq_number; queue++) {
struct mvneta_tx_queue *txq = &pp->txqs[queue];
txq->id = queue;
txq->size = pp->tx_ring_size;
}
pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
GFP_KERNEL);
if (!pp->rxqs) {
kfree(pp->txqs);
return -ENOMEM;
}
/* U-Boot special: use preallocated area */
pp->rxqs[0].descs = buffer_loc.rx_descs;
/* Create Rx descriptor rings */
for (queue = 0; queue < rxq_number; queue++) {
struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
rxq->id = queue;
rxq->size = pp->rx_ring_size;
}
return 0;
}
/* platform glue : initialize decoding windows */
static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
{
const struct mbus_dram_target_info *dram;
u32 win_enable;
u32 win_protect;
int i;
dram = mvebu_mbus_dram_info();
for (i = 0; i < 6; i++) {
mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
if (i < 4)
mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
}
win_enable = 0x3f;
win_protect = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
(cs->mbus_attr << 8) | dram->mbus_dram_target_id);
mvreg_write(pp, MVNETA_WIN_SIZE(i),
(cs->size - 1) & 0xffff0000);
win_enable &= ~(1 << i);
win_protect |= 3 << (2 * i);
}
mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
}
/* Power up the port */
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
{
u32 ctrl;
/* MAC Cause register should be cleared */
mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
/* Even though it might look weird, when we're configured in
* SGMII or QSGMII mode, the RGMII bit needs to be set.
*/
switch (phy_mode) {
case PHY_INTERFACE_MODE_QSGMII:
mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
break;
case PHY_INTERFACE_MODE_SGMII:
mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
ctrl |= MVNETA_GMAC2_PORT_RGMII;
break;
default:
return -EINVAL;
}
/* Cancel Port Reset */
ctrl &= ~MVNETA_GMAC2_PORT_RESET;
mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
MVNETA_GMAC2_PORT_RESET) != 0)
continue;
return 0;
}
/* Device initialization routine */
static int mvneta_init(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct mvneta_port *pp = dev_get_priv(dev);
int err;
pp->tx_ring_size = MVNETA_MAX_TXD;
pp->rx_ring_size = MVNETA_MAX_RXD;
err = mvneta_init2(pp);
if (err < 0) {
dev_err(&pdev->dev, "can't init eth hal\n");
return err;
}
mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
err = mvneta_port_power_up(pp, pp->phy_interface);
if (err < 0) {
dev_err(&pdev->dev, "can't power up port\n");
return err;
}
/* Call open() now as it needs to be done before runing send() */
mvneta_open(dev);
return 0;
}
/* U-Boot only functions follow here */
/* SMI / MDIO functions */
static int smi_wait_ready(struct mvneta_port *pp)
{
u32 timeout = MVNETA_SMI_TIMEOUT;
u32 smi_reg;
/* wait till the SMI is not busy */
do {
/* read smi register */
smi_reg = mvreg_read(pp, MVNETA_SMI);
if (timeout-- == 0) {
printf("Error: SMI busy timeout\n");
return -EFAULT;
}
} while (smi_reg & MVNETA_SMI_BUSY);
return 0;
}
/*
* mvneta_mdio_read - miiphy_read callback function.
*
* Returns 16bit phy register value, or 0xffff on error
*/
static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct mvneta_port *pp = bus->priv;
u32 smi_reg;
u32 timeout;
/* check parameters */
if (addr > MVNETA_PHY_ADDR_MASK) {
printf("Error: Invalid PHY address %d\n", addr);
return -EFAULT;
}
if (reg > MVNETA_PHY_REG_MASK) {
printf("Err: Invalid register offset %d\n", reg);
return -EFAULT;
}
/* wait till the SMI is not busy */
if (smi_wait_ready(pp) < 0)
return -EFAULT;
/* fill the phy address and regiser offset and read opcode */
smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
| (reg << MVNETA_SMI_REG_ADDR_OFFS)
| MVNETA_SMI_OPCODE_READ;
/* write the smi register */
mvreg_write(pp, MVNETA_SMI, smi_reg);
/* wait till read value is ready */
timeout = MVNETA_SMI_TIMEOUT;
do {
/* read smi register */
smi_reg = mvreg_read(pp, MVNETA_SMI);
if (timeout-- == 0) {
printf("Err: SMI read ready timeout\n");
return -EFAULT;
}
} while (!(smi_reg & MVNETA_SMI_READ_VALID));
/* Wait for the data to update in the SMI register */
for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
;
return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
}
/*
* mvneta_mdio_write - miiphy_write callback function.
*
* Returns 0 if write succeed, -EINVAL on bad parameters
* -ETIME on timeout
*/
static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 value)
{
struct mvneta_port *pp = bus->priv;
u32 smi_reg;
/* check parameters */
if (addr > MVNETA_PHY_ADDR_MASK) {
printf("Error: Invalid PHY address %d\n", addr);
return -EFAULT;
}
if (reg > MVNETA_PHY_REG_MASK) {
printf("Err: Invalid register offset %d\n", reg);
return -EFAULT;
}
/* wait till the SMI is not busy */
if (smi_wait_ready(pp) < 0)
return -EFAULT;
/* fill the phy addr and reg offset and write opcode and data */
smi_reg = value << MVNETA_SMI_DATA_OFFS;
smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
| (reg << MVNETA_SMI_REG_ADDR_OFFS);
smi_reg &= ~MVNETA_SMI_OPCODE_READ;
/* write the smi register */
mvreg_write(pp, MVNETA_SMI, smi_reg);
return 0;
}
static int mvneta_start(struct udevice *dev)
{
struct mvneta_port *pp = dev_get_priv(dev);
struct phy_device *phydev;
mvneta_port_power_up(pp, pp->phy_interface);
if (!pp->init || pp->link == 0) {
/* Set phy address of the port */
mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
phydev = phy_connect(pp->bus, pp->phyaddr, dev,
pp->phy_interface);
pp->phydev = phydev;
phy_config(phydev);
phy_startup(phydev);
if (!phydev->link) {
printf("%s: No link.\n", phydev->dev->name);
return -1;
}
/* Full init on first call */
mvneta_init(dev);
pp->init = 1;
} else {
/* Upon all following calls, this is enough */
mvneta_port_up(pp);
mvneta_port_enable(pp);
}
return 0;
}
static int mvneta_send(struct udevice *dev, void *packet, int length)
{
struct mvneta_port *pp = dev_get_priv(dev);
struct mvneta_tx_queue *txq = &pp->txqs[0];
struct mvneta_tx_desc *tx_desc;
int sent_desc;
u32 timeout = 0;
/* Get a descriptor for the first part of the packet */
tx_desc = mvneta_txq_next_desc_get(txq);
tx_desc->buf_phys_addr = (u32)packet;
tx_desc->data_size = length;
flush_dcache_range((u32)packet, (u32)packet + length);
/* First and Last descriptor */
tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
mvneta_txq_pend_desc_add(pp, txq, 1);
/* Wait for packet to be sent (queue might help with speed here) */
sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
while (!sent_desc) {
if (timeout++ > 10000) {
printf("timeout: packet not sent\n");
return -1;
}
sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
}
/* txDone has increased - hw sent packet */
mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
return 0;
}
static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct mvneta_port *pp = dev_get_priv(dev);
int rx_done;
struct mvneta_rx_queue *rxq;
int rx_bytes = 0;
/* get rx queue */
rxq = mvneta_rxq_handle_get(pp, rxq_def);
rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
if (rx_done) {
struct mvneta_rx_desc *rx_desc;
unsigned char *data;
u32 rx_status;
/*
* No cache invalidation needed here, since the desc's are
* located in a uncached memory region
*/
rx_desc = mvneta_rxq_next_desc_get(rxq);
rx_status = rx_desc->status;
if (!mvneta_rxq_desc_is_first_last(rx_status) ||
(rx_status & MVNETA_RXD_ERR_SUMMARY)) {
mvneta_rx_error(pp, rx_desc);
/* leave the descriptor untouched */
return -EIO;
}
/* 2 bytes for marvell header. 4 bytes for crc */
rx_bytes = rx_desc->data_size - 6;
/* give packet to stack - skip on first 2 bytes */
data = (u8 *)rx_desc->buf_cookie + 2;
/*
* No cache invalidation needed here, since the rx_buffer's are
* located in a uncached memory region
*/
*packetp = data;
mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
}
return rx_bytes;
}
static int mvneta_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct mvneta_port *pp = dev_get_priv(dev);
void *blob = (void *)gd->fdt_blob;
int node = dev->of_offset;
struct mii_dev *bus;
unsigned long addr;
void *bd_space;
/*
* Allocate buffer area for descs and rx_buffers. This is only
* done once for all interfaces. As only one interface can
* be active. Make this area DMA save by disabling the D-cache
*/
if (!buffer_loc.tx_descs) {
/* Align buffer area for descs and rx_buffers to 1MiB */
bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
mmu_set_region_dcache_behaviour((u32)bd_space, BD_SPACE,
DCACHE_OFF);
buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
buffer_loc.rx_descs = (struct mvneta_rx_desc *)
((u32)bd_space +
MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
buffer_loc.rx_buffers = (u32)
(bd_space +
MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
}
pp->base = (void __iomem *)pdata->iobase;
/* Configure MBUS address windows */
mvneta_conf_mbus_windows(pp);
/* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
pp->phy_interface = pdata->phy_interface;
/* Now read phyaddr from DT */
addr = fdtdec_get_int(blob, node, "phy", 0);
addr = fdt_node_offset_by_phandle(blob, addr);
pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
bus = mdio_alloc();
if (!bus) {
printf("Failed to allocate MDIO bus\n");
return -ENOMEM;
}
bus->read = mvneta_mdio_read;
bus->write = mvneta_mdio_write;
snprintf(bus->name, sizeof(bus->name), dev->name);
bus->priv = (void *)pp;
pp->bus = bus;
return mdio_register(bus);
}
static void mvneta_stop(struct udevice *dev)
{
struct mvneta_port *pp = dev_get_priv(dev);
mvneta_port_down(pp);
mvneta_port_disable(pp);
}
static const struct eth_ops mvneta_ops = {
.start = mvneta_start,
.send = mvneta_send,
.recv = mvneta_recv,
.stop = mvneta_stop,
};
static int mvneta_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
const char *phy_mode;
pdata->iobase = dev_get_addr(dev);
/* Get phy-mode / phy_interface from DT */
pdata->phy_interface = -1;
phy_mode = fdt_getprop(gd->fdt_blob, dev->of_offset, "phy-mode", NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
return 0;
}
static const struct udevice_id mvneta_ids[] = {
{ .compatible = "marvell,armada-370-neta" },
{ .compatible = "marvell,armada-xp-neta" },
{ }
};
U_BOOT_DRIVER(mvneta) = {
.name = "mvneta",
.id = UCLASS_ETH,
.of_match = mvneta_ids,
.ofdata_to_platdata = mvneta_ofdata_to_platdata,
.probe = mvneta_probe,
.ops = &mvneta_ops,
.priv_auto_alloc_size = sizeof(struct mvneta_port),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};