Jetpack/u-boot/drivers/net/dwc_eth_qos.c
dchvs 31faf4d851 cti_kernel: Add CTI sources
Elroy L4T r32.4.4 – JetPack 4.4.1
2021-03-15 20:15:11 -06:00

1553 lines
42 KiB
C

/*
* Copyright (c) 2016, NVIDIA CORPORATION.
*
* SPDX-License-Identifier: GPL-2.0
*
* Portions based on U-Boot's rtl8169.c.
*/
/*
* This driver supports the Synopsys Designware Ethernet QOS (Quality Of
* Service) IP block. The IP supports multiple options for bus type, clocking/
* reset structure, and feature list.
*
* The driver is written such that generic core logic is kept separate from
* configuration-specific logic. Code that interacts with configuration-
* specific resources is split out into separate functions to avoid polluting
* common code. If/when this driver is enhanced to support multiple
* configurations, the core code should be adapted to call all configuration-
* specific functions through function pointers, with the definition of those
* function pointers being supplied by struct udevice_id eqos_ids[]'s .data
* field.
*
* The following configurations are currently supported:
* tegra186:
* NVIDIA's Tegra186 chip. This configuration uses an AXI master/DMA bus, an
* AHB slave/register bus, contains the DMA, MTL, and MAC sub-blocks, and
* supports a single RGMII PHY. This configuration also has SW control over
* all clock and reset signals to the HW block.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <miiphy.h>
#include <net.h>
#include <netdev.h>
#include <phy.h>
#include <reset.h>
#include <wait_bit.h>
#include <asm/gpio.h>
#include <asm/io.h>
/* Core registers */
#define EQOS_MAC_REGS_BASE 0x000
struct eqos_mac_regs {
uint32_t configuration; /* 0x000 */
uint32_t unused_004[(0x070 - 0x004) / 4]; /* 0x004 */
uint32_t q0_tx_flow_ctrl; /* 0x070 */
uint32_t unused_070[(0x090 - 0x074) / 4]; /* 0x074 */
uint32_t rx_flow_ctrl; /* 0x090 */
uint32_t unused_094; /* 0x094 */
uint32_t txq_prty_map0; /* 0x098 */
uint32_t unused_09c; /* 0x09c */
uint32_t rxq_ctrl0; /* 0x0a0 */
uint32_t unused_0a4; /* 0x0a4 */
uint32_t rxq_ctrl2; /* 0x0a8 */
uint32_t unused_0ac[(0x0dc - 0x0ac) / 4]; /* 0x0ac */
uint32_t us_tic_counter; /* 0x0dc */
uint32_t unused_0e0[(0x11c - 0x0e0) / 4]; /* 0x0e0 */
uint32_t hw_feature0; /* 0x11c */
uint32_t hw_feature1; /* 0x120 */
uint32_t hw_feature2; /* 0x124 */
uint32_t unused_128[(0x200 - 0x128) / 4]; /* 0x128 */
uint32_t mdio_address; /* 0x200 */
uint32_t mdio_data; /* 0x204 */
uint32_t unused_208[(0x300 - 0x208) / 4]; /* 0x208 */
uint32_t address0_high; /* 0x300 */
uint32_t address0_low; /* 0x304 */
};
#define EQOS_MAC_CONFIGURATION_GPSLCE BIT(23)
#define EQOS_MAC_CONFIGURATION_CST BIT(21)
#define EQOS_MAC_CONFIGURATION_ACS BIT(20)
#define EQOS_MAC_CONFIGURATION_WD BIT(19)
#define EQOS_MAC_CONFIGURATION_JD BIT(17)
#define EQOS_MAC_CONFIGURATION_JE BIT(16)
#define EQOS_MAC_CONFIGURATION_PS BIT(15)
#define EQOS_MAC_CONFIGURATION_FES BIT(14)
#define EQOS_MAC_CONFIGURATION_DM BIT(13)
#define EQOS_MAC_CONFIGURATION_TE BIT(1)
#define EQOS_MAC_CONFIGURATION_RE BIT(0)
#define EQOS_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT 16
#define EQOS_MAC_Q0_TX_FLOW_CTRL_PT_MASK 0xffff
#define EQOS_MAC_Q0_TX_FLOW_CTRL_TFE BIT(1)
#define EQOS_MAC_RX_FLOW_CTRL_RFE BIT(0)
#define EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_SHIFT 0
#define EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK 0xff
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT 0
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_MASK 3
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_NOT_ENABLED 0
#define EQOS_MAC_RXQ_CTRL0_RXQ0EN_ENABLED_DCB 2
#define EQOS_MAC_RXQ_CTRL2_PSRQ0_SHIFT 0
#define EQOS_MAC_RXQ_CTRL2_PSRQ0_MASK 0xff
#define EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_SHIFT 6
#define EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_MASK 0x1f
#define EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_SHIFT 0
#define EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_MASK 0x1f
#define EQOS_MAC_MDIO_ADDRESS_PA_SHIFT 21
#define EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT 16
#define EQOS_MAC_MDIO_ADDRESS_CR_SHIFT 8
#define EQOS_MAC_MDIO_ADDRESS_CR_20_35 2
#define EQOS_MAC_MDIO_ADDRESS_SKAP BIT(4)
#define EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT 2
#define EQOS_MAC_MDIO_ADDRESS_GOC_READ 3
#define EQOS_MAC_MDIO_ADDRESS_GOC_WRITE 1
#define EQOS_MAC_MDIO_ADDRESS_C45E BIT(1)
#define EQOS_MAC_MDIO_ADDRESS_GB BIT(0)
#define EQOS_MAC_MDIO_DATA_GD_MASK 0xffff
#define EQOS_MTL_REGS_BASE 0xd00
struct eqos_mtl_regs {
uint32_t txq0_operation_mode; /* 0xd00 */
uint32_t unused_d04; /* 0xd04 */
uint32_t txq0_debug; /* 0xd08 */
uint32_t unused_d0c[(0xd18 - 0xd0c) / 4]; /* 0xd0c */
uint32_t txq0_quantum_weight; /* 0xd18 */
uint32_t unused_d1c[(0xd30 - 0xd1c) / 4]; /* 0xd1c */
uint32_t rxq0_operation_mode; /* 0xd30 */
uint32_t unused_d34; /* 0xd34 */
uint32_t rxq0_debug; /* 0xd38 */
};
#define EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT 16
#define EQOS_MTL_TXQ0_OPERATION_MODE_TQS_MASK 0x1ff
#define EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_SHIFT 2
#define EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_MASK 3
#define EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_ENABLED 2
#define EQOS_MTL_TXQ0_OPERATION_MODE_TSF BIT(1)
#define EQOS_MTL_TXQ0_OPERATION_MODE_FTQ BIT(0)
#define EQOS_MTL_TXQ0_DEBUG_TXQSTS BIT(4)
#define EQOS_MTL_TXQ0_DEBUG_TRCSTS_SHIFT 1
#define EQOS_MTL_TXQ0_DEBUG_TRCSTS_MASK 3
#define EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT 20
#define EQOS_MTL_RXQ0_OPERATION_MODE_RQS_MASK 0x3ff
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT 14
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFD_MASK 0x3f
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT 8
#define EQOS_MTL_RXQ0_OPERATION_MODE_RFA_MASK 0x3f
#define EQOS_MTL_RXQ0_OPERATION_MODE_EHFC BIT(7)
#define EQOS_MTL_RXQ0_OPERATION_MODE_RSF BIT(5)
#define EQOS_MTL_RXQ0_DEBUG_PRXQ_SHIFT 16
#define EQOS_MTL_RXQ0_DEBUG_PRXQ_MASK 0x7fff
#define EQOS_MTL_RXQ0_DEBUG_RXQSTS_SHIFT 4
#define EQOS_MTL_RXQ0_DEBUG_RXQSTS_MASK 3
#define EQOS_DMA_REGS_BASE 0x1000
struct eqos_dma_regs {
uint32_t mode; /* 0x1000 */
uint32_t sysbus_mode; /* 0x1004 */
uint32_t unused_1008[(0x1100 - 0x1008) / 4]; /* 0x1008 */
uint32_t ch0_control; /* 0x1100 */
uint32_t ch0_tx_control; /* 0x1104 */
uint32_t ch0_rx_control; /* 0x1108 */
uint32_t unused_110c; /* 0x110c */
uint32_t ch0_txdesc_list_haddress; /* 0x1110 */
uint32_t ch0_txdesc_list_address; /* 0x1114 */
uint32_t ch0_rxdesc_list_haddress; /* 0x1118 */
uint32_t ch0_rxdesc_list_address; /* 0x111c */
uint32_t ch0_txdesc_tail_pointer; /* 0x1120 */
uint32_t unused_1124; /* 0x1124 */
uint32_t ch0_rxdesc_tail_pointer; /* 0x1128 */
uint32_t ch0_txdesc_ring_length; /* 0x112c */
uint32_t ch0_rxdesc_ring_length; /* 0x1130 */
};
#define EQOS_DMA_MODE_SWR BIT(0)
#define EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT 16
#define EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK 0xf
#define EQOS_DMA_SYSBUS_MODE_EAME BIT(11)
#define EQOS_DMA_SYSBUS_MODE_BLEN16 BIT(3)
#define EQOS_DMA_SYSBUS_MODE_BLEN8 BIT(2)
#define EQOS_DMA_SYSBUS_MODE_BLEN4 BIT(1)
#define EQOS_DMA_CH0_CONTROL_PBLX8 BIT(16)
#define EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT 16
#define EQOS_DMA_CH0_TX_CONTROL_TXPBL_MASK 0x3f
#define EQOS_DMA_CH0_TX_CONTROL_OSP BIT(4)
#define EQOS_DMA_CH0_TX_CONTROL_ST BIT(0)
#define EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT 16
#define EQOS_DMA_CH0_RX_CONTROL_RXPBL_MASK 0x3f
#define EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT 1
#define EQOS_DMA_CH0_RX_CONTROL_RBSZ_MASK 0x3fff
#define EQOS_DMA_CH0_RX_CONTROL_SR BIT(0)
/* These registers are Tegra186-specific */
#define EQOS_TEGRA186_REGS_BASE 0x8800
struct eqos_tegra186_regs {
uint32_t sdmemcomppadctrl; /* 0x8800 */
uint32_t auto_cal_config; /* 0x8804 */
uint32_t unused_8808; /* 0x8808 */
uint32_t auto_cal_status; /* 0x880c */
};
#define EQOS_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD BIT(31)
#define EQOS_AUTO_CAL_CONFIG_START BIT(31)
#define EQOS_AUTO_CAL_CONFIG_ENABLE BIT(29)
#define EQOS_AUTO_CAL_STATUS_ACTIVE BIT(31)
/* Descriptors */
#define EQOS_DESCRIPTOR_WORDS 4
#define EQOS_DESCRIPTOR_SIZE (EQOS_DESCRIPTOR_WORDS * 4)
/* We assume ARCH_DMA_MINALIGN >= 16; 16 is the EQOS HW minimum */
#define EQOS_DESCRIPTOR_ALIGN ARCH_DMA_MINALIGN
#define EQOS_DESCRIPTORS_TX 4
#define EQOS_DESCRIPTORS_RX 4
#define EQOS_DESCRIPTORS_NUM (EQOS_DESCRIPTORS_TX + EQOS_DESCRIPTORS_RX)
#define EQOS_DESCRIPTORS_SIZE ALIGN(EQOS_DESCRIPTORS_NUM * \
EQOS_DESCRIPTOR_SIZE, ARCH_DMA_MINALIGN)
#define EQOS_BUFFER_ALIGN ARCH_DMA_MINALIGN
#define EQOS_MAX_PACKET_SIZE ALIGN(1568, ARCH_DMA_MINALIGN)
#define EQOS_RX_BUFFER_SIZE (EQOS_DESCRIPTORS_RX * EQOS_MAX_PACKET_SIZE)
/*
* Warn if the cache-line size is larger than the descriptor size. In such
* cases the driver will likely fail because the CPU needs to flush the cache
* when requeuing RX buffers, therefore descriptors written by the hardware
* may be discarded. Architectures with full IO coherence, such as x86, do not
* experience this issue, and hence are excluded from this condition.
*
* This can be fixed by defining CONFIG_SYS_NONCACHED_MEMORY which will cause
* the driver to allocate descriptors from a pool of non-cached memory.
*/
#if EQOS_DESCRIPTOR_SIZE < ARCH_DMA_MINALIGN
#if !defined(CONFIG_SYS_NONCACHED_MEMORY) && \
!defined(CONFIG_SYS_DCACHE_OFF) && !defined(CONFIG_X86)
#warning Cache line size is larger than descriptor size
#endif
#endif
struct eqos_desc {
u32 des0;
u32 des1;
u32 des2;
u32 des3;
};
#define EQOS_DESC3_OWN BIT(31)
#define EQOS_DESC3_FD BIT(29)
#define EQOS_DESC3_LD BIT(28)
#define EQOS_DESC3_BUF1V BIT(24)
struct eqos_config {
bool reg_access_always_ok;
};
struct eqos_priv {
struct udevice *dev;
const struct eqos_config *config;
fdt_addr_t regs;
struct eqos_mac_regs *mac_regs;
struct eqos_mtl_regs *mtl_regs;
struct eqos_dma_regs *dma_regs;
struct eqos_tegra186_regs *tegra186_regs;
struct reset_ctl reset_ctl;
struct gpio_desc phy_reset_gpio;
struct clk clk_master_bus;
struct clk clk_rx;
struct clk clk_ptp_ref;
struct clk clk_tx;
struct clk clk_slave_bus;
struct mii_dev *mii;
struct phy_device *phy;
void *descs;
struct eqos_desc *tx_descs;
struct eqos_desc *rx_descs;
int tx_desc_idx, rx_desc_idx;
void *tx_dma_buf;
void *rx_dma_buf;
void *rx_pkt;
bool started;
bool reg_access_ok;
};
/*
* TX and RX descriptors are 16 bytes. This causes problems with the cache
* maintenance on CPUs where the cache-line size exceeds the size of these
* descriptors. What will happen is that when the driver receives a packet
* it will be immediately requeued for the hardware to reuse. The CPU will
* therefore need to flush the cache-line containing the descriptor, which
* will cause all other descriptors in the same cache-line to be flushed
* along with it. If one of those descriptors had been written to by the
* device those changes (and the associated packet) will be lost.
*
* To work around this, we make use of non-cached memory if available. If
* descriptors are mapped uncached there's no need to manually flush them
* or invalidate them.
*
* Note that this only applies to descriptors. The packet data buffers do
* not have the same constraints since they are 1536 bytes large, so they
* are unlikely to share cache-lines.
*/
static void *eqos_alloc_descs(unsigned int num)
{
#ifdef CONFIG_SYS_NONCACHED_MEMORY
return (void *)noncached_alloc(EQOS_DESCRIPTORS_SIZE,
EQOS_DESCRIPTOR_ALIGN);
#else
return memalign(EQOS_DESCRIPTOR_ALIGN, EQOS_DESCRIPTORS_SIZE);
#endif
}
static void eqos_free_descs(void *descs)
{
#ifdef CONFIG_SYS_NONCACHED_MEMORY
/* FIXME: noncached_alloc() has no opposite */
#else
free(descs);
#endif
}
static void eqos_inval_desc(void *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + EQOS_DESCRIPTOR_SIZE,
ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
#endif
}
static void eqos_flush_desc(void *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
flush_cache((unsigned long)desc, EQOS_DESCRIPTOR_SIZE);
#endif
}
static void eqos_inval_buffer(void *buf, size_t size)
{
unsigned long start = (unsigned long)buf & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + size, ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
}
static void eqos_flush_buffer(void *buf, size_t size)
{
flush_cache((unsigned long)buf, size);
}
static int eqos_mdio_wait_idle(struct eqos_priv *eqos)
{
return wait_for_bit(__func__, &eqos->mac_regs->mdio_address,
EQOS_MAC_MDIO_ADDRESS_GB, false, 1000000, true);
}
static int eqos_mdio_read(struct mii_dev *bus, int mdio_addr, int mdio_devad,
int mdio_reg)
{
struct eqos_priv *eqos = bus->priv;
u32 val;
int ret;
debug("%s(dev=%p, addr=%x, reg=%d):\n", __func__, eqos->dev, mdio_addr,
mdio_reg);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
error("MDIO not idle at entry");
return ret;
}
val = readl(&eqos->mac_regs->mdio_address);
val &= EQOS_MAC_MDIO_ADDRESS_SKAP |
EQOS_MAC_MDIO_ADDRESS_C45E;
val |= (mdio_addr << EQOS_MAC_MDIO_ADDRESS_PA_SHIFT) |
(mdio_reg << EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT) |
(EQOS_MAC_MDIO_ADDRESS_CR_20_35 <<
EQOS_MAC_MDIO_ADDRESS_CR_SHIFT) |
(EQOS_MAC_MDIO_ADDRESS_GOC_READ <<
EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT) |
EQOS_MAC_MDIO_ADDRESS_GB;
writel(val, &eqos->mac_regs->mdio_address);
udelay(10);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
error("MDIO read didn't complete");
return ret;
}
val = readl(&eqos->mac_regs->mdio_data);
val &= EQOS_MAC_MDIO_DATA_GD_MASK;
debug("%s: val=%x\n", __func__, val);
return val;
}
static int eqos_mdio_write(struct mii_dev *bus, int mdio_addr, int mdio_devad,
int mdio_reg, u16 mdio_val)
{
struct eqos_priv *eqos = bus->priv;
u32 val;
int ret;
debug("%s(dev=%p, addr=%x, reg=%d, val=%x):\n", __func__, eqos->dev,
mdio_addr, mdio_reg, mdio_val);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
error("MDIO not idle at entry");
return ret;
}
writel(mdio_val, &eqos->mac_regs->mdio_data);
val = readl(&eqos->mac_regs->mdio_address);
val &= EQOS_MAC_MDIO_ADDRESS_SKAP |
EQOS_MAC_MDIO_ADDRESS_C45E;
val |= (mdio_addr << EQOS_MAC_MDIO_ADDRESS_PA_SHIFT) |
(mdio_reg << EQOS_MAC_MDIO_ADDRESS_RDA_SHIFT) |
(EQOS_MAC_MDIO_ADDRESS_CR_20_35 <<
EQOS_MAC_MDIO_ADDRESS_CR_SHIFT) |
(EQOS_MAC_MDIO_ADDRESS_GOC_WRITE <<
EQOS_MAC_MDIO_ADDRESS_GOC_SHIFT) |
EQOS_MAC_MDIO_ADDRESS_GB;
writel(val, &eqos->mac_regs->mdio_address);
udelay(10);
ret = eqos_mdio_wait_idle(eqos);
if (ret) {
error("MDIO read didn't complete");
return ret;
}
return 0;
}
static int eqos_start_clks_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
debug("%s(dev=%p):\n", __func__, dev);
ret = clk_enable(&eqos->clk_slave_bus);
if (ret < 0) {
error("clk_enable(clk_slave_bus) failed: %d", ret);
goto err;
}
ret = clk_enable(&eqos->clk_master_bus);
if (ret < 0) {
error("clk_enable(clk_master_bus) failed: %d", ret);
goto err_disable_clk_slave_bus;
}
ret = clk_enable(&eqos->clk_rx);
if (ret < 0) {
error("clk_enable(clk_rx) failed: %d", ret);
goto err_disable_clk_master_bus;
}
ret = clk_enable(&eqos->clk_ptp_ref);
if (ret < 0) {
error("clk_enable(clk_ptp_ref) failed: %d", ret);
goto err_disable_clk_rx;
}
ret = clk_set_rate(&eqos->clk_ptp_ref, 125 * 1000 * 1000);
if (ret < 0) {
error("clk_set_rate(clk_ptp_ref) failed: %d", ret);
goto err_disable_clk_ptp_ref;
}
ret = clk_enable(&eqos->clk_tx);
if (ret < 0) {
error("clk_enable(clk_tx) failed: %d", ret);
goto err_disable_clk_ptp_ref;
}
debug("%s: OK\n", __func__);
return 0;
err_disable_clk_ptp_ref:
clk_disable(&eqos->clk_ptp_ref);
err_disable_clk_rx:
clk_disable(&eqos->clk_rx);
err_disable_clk_master_bus:
clk_disable(&eqos->clk_master_bus);
err_disable_clk_slave_bus:
clk_disable(&eqos->clk_slave_bus);
err:
debug("%s: FAILED: %d\n", __func__, ret);
return ret;
}
void eqos_stop_clks_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
clk_disable(&eqos->clk_tx);
clk_disable(&eqos->clk_ptp_ref);
clk_disable(&eqos->clk_rx);
clk_disable(&eqos->clk_master_bus);
clk_disable(&eqos->clk_slave_bus);
debug("%s: OK\n", __func__);
}
static int eqos_start_resets_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
debug("%s(dev=%p):\n", __func__, dev);
ret = dm_gpio_set_value(&eqos->phy_reset_gpio, 1);
if (ret < 0) {
error("dm_gpio_set_value(phy_reset, assert) failed: %d", ret);
return ret;
}
udelay(2);
ret = dm_gpio_set_value(&eqos->phy_reset_gpio, 0);
if (ret < 0) {
error("dm_gpio_set_value(phy_reset, deassert) failed: %d", ret);
return ret;
}
ret = reset_assert(&eqos->reset_ctl);
if (ret < 0) {
error("reset_assert() failed: %d", ret);
return ret;
}
udelay(2);
ret = reset_deassert(&eqos->reset_ctl);
if (ret < 0) {
error("reset_deassert() failed: %d", ret);
return ret;
}
debug("%s: OK\n", __func__);
return 0;
}
static int eqos_stop_resets_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
reset_assert(&eqos->reset_ctl);
dm_gpio_set_value(&eqos->phy_reset_gpio, 1);
return 0;
}
static int eqos_calibrate_pads_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
debug("%s(dev=%p):\n", __func__, dev);
setbits_le32(&eqos->tegra186_regs->sdmemcomppadctrl,
EQOS_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD);
udelay(1);
setbits_le32(&eqos->tegra186_regs->auto_cal_config,
EQOS_AUTO_CAL_CONFIG_START | EQOS_AUTO_CAL_CONFIG_ENABLE);
ret = wait_for_bit(__func__, &eqos->tegra186_regs->auto_cal_status,
EQOS_AUTO_CAL_STATUS_ACTIVE, true, 10, false);
if (ret) {
error("calibrate didn't start");
goto failed;
}
ret = wait_for_bit(__func__, &eqos->tegra186_regs->auto_cal_status,
EQOS_AUTO_CAL_STATUS_ACTIVE, false, 10, false);
if (ret) {
error("calibrate didn't finish");
goto failed;
}
ret = 0;
failed:
clrbits_le32(&eqos->tegra186_regs->sdmemcomppadctrl,
EQOS_SDMEMCOMPPADCTRL_PAD_E_INPUT_OR_E_PWRD);
debug("%s: returns %d\n", __func__, ret);
return ret;
}
static int eqos_disable_calibration_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
clrbits_le32(&eqos->tegra186_regs->auto_cal_config,
EQOS_AUTO_CAL_CONFIG_ENABLE);
return 0;
}
static ulong eqos_get_tick_clk_rate_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
return clk_get_rate(&eqos->clk_slave_bus);
}
static int eqos_set_full_duplex(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
setbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_DM);
return 0;
}
static int eqos_set_half_duplex(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
clrbits_le32(&eqos->mac_regs->configuration, EQOS_MAC_CONFIGURATION_DM);
/* WAR: Flush TX queue when switching to half-duplex */
setbits_le32(&eqos->mtl_regs->txq0_operation_mode,
EQOS_MTL_TXQ0_OPERATION_MODE_FTQ);
return 0;
}
static int eqos_set_gmii_speed(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
clrbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_PS | EQOS_MAC_CONFIGURATION_FES);
return 0;
}
static int eqos_set_mii_speed_100(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
setbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_PS | EQOS_MAC_CONFIGURATION_FES);
return 0;
}
static int eqos_set_mii_speed_10(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
clrsetbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_FES, EQOS_MAC_CONFIGURATION_PS);
return 0;
}
static int eqos_set_tx_clk_speed_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
ulong rate;
int ret;
debug("%s(dev=%p):\n", __func__, dev);
switch (eqos->phy->speed) {
case SPEED_1000:
rate = 125 * 1000 * 1000;
break;
case SPEED_100:
rate = 25 * 1000 * 1000;
break;
case SPEED_10:
rate = 2.5 * 1000 * 1000;
break;
default:
error("invalid speed %d", eqos->phy->speed);
return -EINVAL;
}
ret = clk_set_rate(&eqos->clk_tx, rate);
if (ret < 0) {
error("clk_set_rate(tx_clk, %lu) failed: %d", rate, ret);
return ret;
}
return 0;
}
static int eqos_adjust_link(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
bool en_calibration;
debug("%s(dev=%p):\n", __func__, dev);
if (eqos->phy->duplex)
ret = eqos_set_full_duplex(dev);
else
ret = eqos_set_half_duplex(dev);
if (ret < 0) {
error("eqos_set_*_duplex() failed: %d", ret);
return ret;
}
switch (eqos->phy->speed) {
case SPEED_1000:
en_calibration = true;
ret = eqos_set_gmii_speed(dev);
break;
case SPEED_100:
en_calibration = true;
ret = eqos_set_mii_speed_100(dev);
break;
case SPEED_10:
en_calibration = false;
ret = eqos_set_mii_speed_10(dev);
break;
default:
error("invalid speed %d", eqos->phy->speed);
return -EINVAL;
}
if (ret < 0) {
error("eqos_set_*mii_speed*() failed: %d", ret);
return ret;
}
if (en_calibration) {
ret = eqos_calibrate_pads_tegra186(dev);
if (ret < 0) {
error("eqos_calibrate_pads_tegra186() failed: %d", ret);
return ret;
}
} else {
ret = eqos_disable_calibration_tegra186(dev);
if (ret < 0) {
error("eqos_disable_calibration_tegra186() failed: %d",
ret);
return ret;
}
}
ret = eqos_set_tx_clk_speed_tegra186(dev);
if (ret < 0) {
error("eqos_set_tx_clk_speed_tegra186() failed: %d", ret);
return ret;
}
return 0;
}
static int eqos_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct eqos_priv *eqos = dev_get_priv(dev);
uint32_t val;
/*
* This function may be called before start() or after stop(). At that
* time, on at least some configurations of the EQoS HW, all clocks to
* the EQoS HW block will be stopped, and a reset signal applied. If
* any register access is attempted in this state, bus timeouts or CPU
* hangs may occur. This check prevents that.
*
* A simple solution to this problem would be to not implement
* write_hwaddr(), since start() always writes the MAC address into HW
* anyway. However, it is desirable to implement write_hwaddr() to
* support the case of SW that runs subsequent to U-Boot which expects
* the MAC address to already be programmed into the EQoS registers,
* which must happen irrespective of whether the U-Boot user (or
* scripts) actually made use of the EQoS device, and hence
* irrespective of whether start() was ever called.
*
* Note that this requirement by subsequent SW is not valid for
* Tegra186, and is likely not valid for any non-PCI instantiation of
* the EQoS HW block. This function is implemented solely as
* future-proofing with the expectation the driver will eventually be
* ported to some system where the expectation above is true.
*/
if (!eqos->config->reg_access_always_ok && !eqos->reg_access_ok)
return 0;
/* Update the MAC address */
val = (plat->enetaddr[5] << 8) |
(plat->enetaddr[4]);
writel(val, &eqos->mac_regs->address0_high);
val = (plat->enetaddr[3] << 24) |
(plat->enetaddr[2] << 16) |
(plat->enetaddr[1] << 8) |
(plat->enetaddr[0]);
writel(val, &eqos->mac_regs->address0_low);
return 0;
}
static int eqos_start(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret, i;
ulong rate;
u32 val, tx_fifo_sz, rx_fifo_sz, tqs, rqs, pbl;
ulong last_rx_desc;
debug("%s(dev=%p):\n", __func__, dev);
eqos->tx_desc_idx = 0;
eqos->rx_desc_idx = 0;
ret = eqos_start_clks_tegra186(dev);
if (ret < 0) {
error("eqos_start_clks_tegra186() failed: %d", ret);
goto err;
}
ret = eqos_start_resets_tegra186(dev);
if (ret < 0) {
error("eqos_start_resets_tegra186() failed: %d", ret);
goto err_stop_clks;
}
udelay(10);
eqos->reg_access_ok = true;
ret = wait_for_bit(__func__, &eqos->dma_regs->mode,
EQOS_DMA_MODE_SWR, false, 10, false);
if (ret) {
error("EQOS_DMA_MODE_SWR stuck");
goto err_stop_resets;
}
ret = eqos_calibrate_pads_tegra186(dev);
if (ret < 0) {
error("eqos_calibrate_pads_tegra186() failed: %d", ret);
goto err_stop_resets;
}
rate = eqos_get_tick_clk_rate_tegra186(dev);
val = (rate / 1000000) - 1;
writel(val, &eqos->mac_regs->us_tic_counter);
eqos->phy = phy_connect(eqos->mii, 0, dev, 0);
if (!eqos->phy) {
error("phy_connect() failed");
goto err_stop_resets;
}
ret = phy_config(eqos->phy);
if (ret < 0) {
error("phy_config() failed: %d", ret);
goto err_shutdown_phy;
}
ret = phy_startup(eqos->phy);
if (ret < 0) {
error("phy_startup() failed: %d", ret);
goto err_shutdown_phy;
}
if (!eqos->phy->link) {
error("No link");
goto err_shutdown_phy;
}
ret = eqos_adjust_link(dev);
if (ret < 0) {
error("eqos_adjust_link() failed: %d", ret);
goto err_shutdown_phy;
}
/* Configure MTL */
/* Enable Store and Forward mode for TX */
/* Program Tx operating mode */
setbits_le32(&eqos->mtl_regs->txq0_operation_mode,
EQOS_MTL_TXQ0_OPERATION_MODE_TSF |
(EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_ENABLED <<
EQOS_MTL_TXQ0_OPERATION_MODE_TXQEN_SHIFT));
/* Transmit Queue weight */
writel(0x10, &eqos->mtl_regs->txq0_quantum_weight);
/* Enable Store and Forward mode for RX, since no jumbo frame */
setbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
EQOS_MTL_RXQ0_OPERATION_MODE_RSF);
/* Transmit/Receive queue fifo size; use all RAM for 1 queue */
val = readl(&eqos->mac_regs->hw_feature1);
tx_fifo_sz = (val >> EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_SHIFT) &
EQOS_MAC_HW_FEATURE1_TXFIFOSIZE_MASK;
rx_fifo_sz = (val >> EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_SHIFT) &
EQOS_MAC_HW_FEATURE1_RXFIFOSIZE_MASK;
/*
* r/tx_fifo_sz is encoded as log2(n / 128). Undo that by shifting.
* r/tqs is encoded as (n / 256) - 1.
*/
tqs = (128 << tx_fifo_sz) / 256 - 1;
rqs = (128 << rx_fifo_sz) / 256 - 1;
clrsetbits_le32(&eqos->mtl_regs->txq0_operation_mode,
EQOS_MTL_TXQ0_OPERATION_MODE_TQS_MASK <<
EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT,
tqs << EQOS_MTL_TXQ0_OPERATION_MODE_TQS_SHIFT);
clrsetbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
EQOS_MTL_RXQ0_OPERATION_MODE_RQS_MASK <<
EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT,
rqs << EQOS_MTL_RXQ0_OPERATION_MODE_RQS_SHIFT);
/* Flow control used only if each channel gets 4KB or more FIFO */
if (rqs >= ((4096 / 256) - 1)) {
u32 rfd, rfa;
setbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
EQOS_MTL_RXQ0_OPERATION_MODE_EHFC);
/*
* Set Threshold for Activating Flow Contol space for min 2
* frames ie, (1500 * 1) = 1500 bytes.
*
* Set Threshold for Deactivating Flow Contol for space of
* min 1 frame (frame size 1500bytes) in receive fifo
*/
if (rqs == ((4096 / 256) - 1)) {
/*
* This violates the above formula because of FIFO size
* limit therefore overflow may occur inspite of this.
*/
rfd = 0x3; /* Full-3K */
rfa = 0x1; /* Full-1.5K */
} else if (rqs == ((8192 / 256) - 1)) {
rfd = 0x6; /* Full-4K */
rfa = 0xa; /* Full-6K */
} else if (rqs == ((16384 / 256) - 1)) {
rfd = 0x6; /* Full-4K */
rfa = 0x12; /* Full-10K */
} else {
rfd = 0x6; /* Full-4K */
rfa = 0x1E; /* Full-16K */
}
clrsetbits_le32(&eqos->mtl_regs->rxq0_operation_mode,
(EQOS_MTL_RXQ0_OPERATION_MODE_RFD_MASK <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT) |
(EQOS_MTL_RXQ0_OPERATION_MODE_RFA_MASK <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT),
(rfd <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFD_SHIFT) |
(rfa <<
EQOS_MTL_RXQ0_OPERATION_MODE_RFA_SHIFT));
}
/* Configure MAC */
clrsetbits_le32(&eqos->mac_regs->rxq_ctrl0,
EQOS_MAC_RXQ_CTRL0_RXQ0EN_MASK <<
EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT,
EQOS_MAC_RXQ_CTRL0_RXQ0EN_ENABLED_DCB <<
EQOS_MAC_RXQ_CTRL0_RXQ0EN_SHIFT);
/* Set TX flow control parameters */
/* Set Pause Time */
setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl,
0xffff << EQOS_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT);
/* Assign priority for TX flow control */
clrbits_le32(&eqos->mac_regs->txq_prty_map0,
EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_MASK <<
EQOS_MAC_TXQ_PRTY_MAP0_PSTQ0_SHIFT);
/* Assign priority for RX flow control */
clrbits_le32(&eqos->mac_regs->rxq_ctrl2,
EQOS_MAC_RXQ_CTRL2_PSRQ0_MASK <<
EQOS_MAC_RXQ_CTRL2_PSRQ0_SHIFT);
/* Enable flow control */
setbits_le32(&eqos->mac_regs->q0_tx_flow_ctrl,
EQOS_MAC_Q0_TX_FLOW_CTRL_TFE);
setbits_le32(&eqos->mac_regs->rx_flow_ctrl,
EQOS_MAC_RX_FLOW_CTRL_RFE);
clrsetbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_GPSLCE |
EQOS_MAC_CONFIGURATION_WD |
EQOS_MAC_CONFIGURATION_JD |
EQOS_MAC_CONFIGURATION_JE,
EQOS_MAC_CONFIGURATION_CST |
EQOS_MAC_CONFIGURATION_ACS);
eqos_write_hwaddr(dev);
/* Configure DMA */
/* Enable OSP mode */
setbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_OSP);
/* RX buffer size. Must be a multiple of bus width */
clrsetbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_RBSZ_MASK <<
EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT,
EQOS_MAX_PACKET_SIZE <<
EQOS_DMA_CH0_RX_CONTROL_RBSZ_SHIFT);
setbits_le32(&eqos->dma_regs->ch0_control,
EQOS_DMA_CH0_CONTROL_PBLX8);
/*
* Burst length must be < 1/2 FIFO size.
* FIFO size in tqs is encoded as (n / 256) - 1.
* Each burst is n * 8 (PBLX8) * 16 (AXI width) == 128 bytes.
* Half of n * 256 is n * 128, so pbl == tqs, modulo the -1.
*/
pbl = tqs + 1;
if (pbl > 32)
pbl = 32;
clrsetbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_TXPBL_MASK <<
EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT,
pbl << EQOS_DMA_CH0_TX_CONTROL_TXPBL_SHIFT);
clrsetbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_RXPBL_MASK <<
EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT,
8 << EQOS_DMA_CH0_RX_CONTROL_RXPBL_SHIFT);
/* DMA performance configuration */
val = (2 << EQOS_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT) |
EQOS_DMA_SYSBUS_MODE_EAME | EQOS_DMA_SYSBUS_MODE_BLEN16 |
EQOS_DMA_SYSBUS_MODE_BLEN8 | EQOS_DMA_SYSBUS_MODE_BLEN4;
writel(val, &eqos->dma_regs->sysbus_mode);
/* Set up descriptors */
memset(eqos->descs, 0, EQOS_DESCRIPTORS_SIZE);
for (i = 0; i < EQOS_DESCRIPTORS_RX; i++) {
struct eqos_desc *rx_desc = &(eqos->rx_descs[i]);
rx_desc->des0 = (u32)(ulong)(eqos->rx_dma_buf +
(i * EQOS_MAX_PACKET_SIZE));
rx_desc->des3 |= EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
}
flush_cache((unsigned long)eqos->descs, EQOS_DESCRIPTORS_SIZE);
writel(0, &eqos->dma_regs->ch0_txdesc_list_haddress);
writel((ulong)eqos->tx_descs, &eqos->dma_regs->ch0_txdesc_list_address);
writel(EQOS_DESCRIPTORS_TX - 1,
&eqos->dma_regs->ch0_txdesc_ring_length);
writel(0, &eqos->dma_regs->ch0_rxdesc_list_haddress);
writel((ulong)eqos->rx_descs, &eqos->dma_regs->ch0_rxdesc_list_address);
writel(EQOS_DESCRIPTORS_RX - 1,
&eqos->dma_regs->ch0_rxdesc_ring_length);
/* Enable everything */
setbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_TE | EQOS_MAC_CONFIGURATION_RE);
setbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_ST);
setbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_SR);
/* TX tail pointer not written until we need to TX a packet */
/*
* Point RX tail pointer at last descriptor. Ideally, we'd point at the
* first descriptor, implying all descriptors were available. However,
* that's not distinguishable from none of the descriptors being
* available.
*/
last_rx_desc = (ulong)&(eqos->rx_descs[(EQOS_DESCRIPTORS_RX - 1)]);
writel(last_rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer);
eqos->started = true;
debug("%s: OK\n", __func__);
return 0;
err_shutdown_phy:
phy_shutdown(eqos->phy);
eqos->phy = NULL;
err_stop_resets:
eqos_stop_resets_tegra186(dev);
err_stop_clks:
eqos_stop_clks_tegra186(dev);
err:
error("FAILED: %d", ret);
return ret;
}
void eqos_stop(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int i;
debug("%s(dev=%p):\n", __func__, dev);
if (!eqos->started)
return;
eqos->started = false;
eqos->reg_access_ok = false;
/* Disable TX DMA */
clrbits_le32(&eqos->dma_regs->ch0_tx_control,
EQOS_DMA_CH0_TX_CONTROL_ST);
/* Wait for TX all packets to drain out of MTL */
for (i = 0; i < 1000000; i++) {
u32 val = readl(&eqos->mtl_regs->txq0_debug);
u32 trcsts = (val >> EQOS_MTL_TXQ0_DEBUG_TRCSTS_SHIFT) &
EQOS_MTL_TXQ0_DEBUG_TRCSTS_MASK;
u32 txqsts = val & EQOS_MTL_TXQ0_DEBUG_TXQSTS;
if ((trcsts != 1) && (!txqsts))
break;
}
/* Turn off MAC TX and RX */
clrbits_le32(&eqos->mac_regs->configuration,
EQOS_MAC_CONFIGURATION_TE | EQOS_MAC_CONFIGURATION_RE);
/* Wait for all RX packets to drain out of MTL */
for (i = 0; i < 1000000; i++) {
u32 val = readl(&eqos->mtl_regs->rxq0_debug);
u32 prxq = (val >> EQOS_MTL_RXQ0_DEBUG_PRXQ_SHIFT) &
EQOS_MTL_RXQ0_DEBUG_PRXQ_MASK;
u32 rxqsts = (val >> EQOS_MTL_RXQ0_DEBUG_RXQSTS_SHIFT) &
EQOS_MTL_RXQ0_DEBUG_RXQSTS_MASK;
if ((!prxq) && (!rxqsts))
break;
}
/* Turn off RX DMA */
clrbits_le32(&eqos->dma_regs->ch0_rx_control,
EQOS_DMA_CH0_RX_CONTROL_SR);
if (eqos->phy) {
phy_shutdown(eqos->phy);
eqos->phy = NULL;
}
eqos_stop_resets_tegra186(dev);
eqos_stop_clks_tegra186(dev);
debug("%s: OK\n", __func__);
}
int eqos_send(struct udevice *dev, void *packet, int length)
{
struct eqos_priv *eqos = dev_get_priv(dev);
struct eqos_desc *tx_desc;
int i;
debug("%s(dev=%p, packet=%p, length=%d):\n", __func__, dev, packet,
length);
memcpy(eqos->tx_dma_buf, packet, length);
eqos_flush_buffer(eqos->tx_dma_buf, length);
tx_desc = &(eqos->tx_descs[eqos->tx_desc_idx]);
eqos->tx_desc_idx++;
eqos->tx_desc_idx %= EQOS_DESCRIPTORS_TX;
tx_desc->des0 = (ulong)eqos->tx_dma_buf;
tx_desc->des1 = 0;
tx_desc->des2 = length;
/*
* Make sure that if HW sees the _OWN write below, it will see all the
* writes to the rest of the descriptor too.
*/
mb();
tx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_FD | EQOS_DESC3_LD | length;
eqos_flush_desc(tx_desc);
writel((ulong)(tx_desc + 1), &eqos->dma_regs->ch0_txdesc_tail_pointer);
for (i = 0; i < 1000000; i++) {
eqos_inval_desc(tx_desc);
if (!(readl(&tx_desc->des3) & EQOS_DESC3_OWN))
return 0;
udelay(1);
}
debug("%s: TX timeout\n", __func__);
return -ETIMEDOUT;
}
int eqos_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct eqos_priv *eqos = dev_get_priv(dev);
struct eqos_desc *rx_desc;
int length;
debug("%s(dev=%p, flags=%x):\n", __func__, dev, flags);
rx_desc = &(eqos->rx_descs[eqos->rx_desc_idx]);
if (rx_desc->des3 & EQOS_DESC3_OWN) {
debug("%s: RX packet not available\n", __func__);
return -EAGAIN;
}
*packetp = eqos->rx_dma_buf +
(eqos->rx_desc_idx * EQOS_MAX_PACKET_SIZE);
length = rx_desc->des3 & 0x7fff;
debug("%s: *packetp=%p, length=%d\n", __func__, *packetp, length);
eqos_inval_buffer(*packetp, length);
return length;
}
int eqos_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct eqos_priv *eqos = dev_get_priv(dev);
uchar *packet_expected;
struct eqos_desc *rx_desc;
debug("%s(packet=%p, length=%d)\n", __func__, packet, length);
packet_expected = eqos->rx_dma_buf +
(eqos->rx_desc_idx * EQOS_MAX_PACKET_SIZE);
if (packet != packet_expected) {
debug("%s: Unexpected packet (expected %p)\n", __func__,
packet_expected);
return -EINVAL;
}
rx_desc = &(eqos->rx_descs[eqos->rx_desc_idx]);
rx_desc->des0 = (u32)(ulong)packet;
rx_desc->des1 = 0;
rx_desc->des2 = 0;
/*
* Make sure that if HW sees the _OWN write below, it will see all the
* writes to the rest of the descriptor too.
*/
mb();
rx_desc->des3 |= EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
eqos_flush_desc(rx_desc);
writel((ulong)rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer);
eqos->rx_desc_idx++;
eqos->rx_desc_idx %= EQOS_DESCRIPTORS_RX;
return 0;
}
static int eqos_probe_resources_core(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
debug("%s(dev=%p):\n", __func__, dev);
eqos->descs = eqos_alloc_descs(EQOS_DESCRIPTORS_TX +
EQOS_DESCRIPTORS_RX);
if (!eqos->descs) {
debug("%s: eqos_alloc_descs() failed\n", __func__);
ret = -ENOMEM;
goto err;
}
eqos->tx_descs = (struct eqos_desc *)eqos->descs;
eqos->rx_descs = (eqos->tx_descs + EQOS_DESCRIPTORS_TX);
debug("%s: tx_descs=%p, rx_descs=%p\n", __func__, eqos->tx_descs,
eqos->rx_descs);
eqos->tx_dma_buf = memalign(EQOS_BUFFER_ALIGN, EQOS_MAX_PACKET_SIZE);
if (!eqos->tx_dma_buf) {
debug("%s: memalign(tx_dma_buf) failed\n", __func__);
ret = -ENOMEM;
goto err_free_descs;
}
debug("%s: rx_dma_buf=%p\n", __func__, eqos->rx_dma_buf);
eqos->rx_dma_buf = memalign(EQOS_BUFFER_ALIGN, EQOS_RX_BUFFER_SIZE);
if (!eqos->rx_dma_buf) {
debug("%s: memalign(rx_dma_buf) failed\n", __func__);
ret = -ENOMEM;
goto err_free_tx_dma_buf;
}
debug("%s: tx_dma_buf=%p\n", __func__, eqos->tx_dma_buf);
eqos->rx_pkt = malloc(EQOS_MAX_PACKET_SIZE);
if (!eqos->rx_pkt) {
debug("%s: malloc(rx_pkt) failed\n", __func__);
ret = -ENOMEM;
goto err_free_rx_dma_buf;
}
debug("%s: rx_pkt=%p\n", __func__, eqos->rx_pkt);
debug("%s: OK\n", __func__);
return 0;
err_free_rx_dma_buf:
free(eqos->rx_dma_buf);
err_free_tx_dma_buf:
free(eqos->tx_dma_buf);
err_free_descs:
eqos_free_descs(eqos->descs);
err:
debug("%s: returns %d\n", __func__, ret);
return ret;
}
static int eqos_remove_resources_core(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
free(eqos->rx_pkt);
free(eqos->rx_dma_buf);
free(eqos->tx_dma_buf);
eqos_free_descs(eqos->descs);
debug("%s: OK\n", __func__);
return 0;
}
static int eqos_probe_resources_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
debug("%s(dev=%p):\n", __func__, dev);
ret = reset_get_by_name(dev, "eqos", &eqos->reset_ctl);
if (ret) {
error("reset_get_by_name(rst) failed: %d", ret);
return ret;
}
ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
&eqos->phy_reset_gpio,
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
if (ret) {
error("gpio_request_by_name(phy reset) failed: %d", ret);
goto err_free_reset_eqos;
}
ret = clk_get_by_name(dev, "slave_bus", &eqos->clk_slave_bus);
if (ret) {
error("clk_get_by_name(slave_bus) failed: %d", ret);
goto err_free_gpio_phy_reset;
}
ret = clk_get_by_name(dev, "master_bus", &eqos->clk_master_bus);
if (ret) {
error("clk_get_by_name(master_bus) failed: %d", ret);
goto err_free_clk_slave_bus;
}
ret = clk_get_by_name(dev, "rx", &eqos->clk_rx);
if (ret) {
error("clk_get_by_name(rx) failed: %d", ret);
goto err_free_clk_master_bus;
}
ret = clk_get_by_name(dev, "ptp_ref", &eqos->clk_ptp_ref);
if (ret) {
error("clk_get_by_name(ptp_ref) failed: %d", ret);
goto err_free_clk_rx;
return ret;
}
ret = clk_get_by_name(dev, "tx", &eqos->clk_tx);
if (ret) {
error("clk_get_by_name(tx) failed: %d", ret);
goto err_free_clk_ptp_ref;
}
debug("%s: OK\n", __func__);
return 0;
err_free_clk_ptp_ref:
clk_free(&eqos->clk_ptp_ref);
err_free_clk_rx:
clk_free(&eqos->clk_rx);
err_free_clk_master_bus:
clk_free(&eqos->clk_master_bus);
err_free_clk_slave_bus:
clk_free(&eqos->clk_slave_bus);
err_free_gpio_phy_reset:
dm_gpio_free(dev, &eqos->phy_reset_gpio);
err_free_reset_eqos:
reset_free(&eqos->reset_ctl);
debug("%s: returns %d\n", __func__, ret);
return ret;
}
static int eqos_remove_resources_tegra186(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
clk_free(&eqos->clk_tx);
clk_free(&eqos->clk_ptp_ref);
clk_free(&eqos->clk_rx);
clk_free(&eqos->clk_slave_bus);
clk_free(&eqos->clk_master_bus);
dm_gpio_free(dev, &eqos->phy_reset_gpio);
reset_free(&eqos->reset_ctl);
debug("%s: OK\n", __func__);
return 0;
}
static int eqos_probe(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
int ret;
debug("%s(dev=%p):\n", __func__, dev);
eqos->dev = dev;
eqos->config = (void *)dev_get_driver_data(dev);
eqos->regs = dev_get_addr(dev);
if (eqos->regs == FDT_ADDR_T_NONE) {
error("dev_get_addr() failed");
return -ENODEV;
}
eqos->mac_regs = (void *)(eqos->regs + EQOS_MAC_REGS_BASE);
eqos->mtl_regs = (void *)(eqos->regs + EQOS_MTL_REGS_BASE);
eqos->dma_regs = (void *)(eqos->regs + EQOS_DMA_REGS_BASE);
eqos->tegra186_regs = (void *)(eqos->regs + EQOS_TEGRA186_REGS_BASE);
ret = eqos_probe_resources_core(dev);
if (ret < 0) {
error("eqos_probe_resources_core() failed: %d", ret);
return ret;
}
ret = eqos_probe_resources_tegra186(dev);
if (ret < 0) {
error("eqos_probe_resources_tegra186() failed: %d", ret);
goto err_remove_resources_core;
}
eqos->mii = mdio_alloc();
if (!eqos->mii) {
error("mdio_alloc() failed");
goto err_remove_resources_tegra;
}
eqos->mii->read = eqos_mdio_read;
eqos->mii->write = eqos_mdio_write;
eqos->mii->priv = eqos;
strcpy(eqos->mii->name, dev->name);
ret = mdio_register(eqos->mii);
if (ret < 0) {
error("mdio_register() failed: %d", ret);
goto err_free_mdio;
}
debug("%s: OK\n", __func__);
return 0;
err_free_mdio:
mdio_free(eqos->mii);
err_remove_resources_tegra:
eqos_remove_resources_tegra186(dev);
err_remove_resources_core:
eqos_remove_resources_core(dev);
debug("%s: returns %d\n", __func__, ret);
return ret;
}
static int eqos_remove(struct udevice *dev)
{
struct eqos_priv *eqos = dev_get_priv(dev);
debug("%s(dev=%p):\n", __func__, dev);
mdio_unregister(eqos->mii);
mdio_free(eqos->mii);
eqos_remove_resources_tegra186(dev);
eqos_probe_resources_core(dev);
debug("%s: OK\n", __func__);
return 0;
}
static const struct eth_ops eqos_ops = {
.start = eqos_start,
.stop = eqos_stop,
.send = eqos_send,
.recv = eqos_recv,
.free_pkt = eqos_free_pkt,
.write_hwaddr = eqos_write_hwaddr,
};
static const struct eqos_config eqos_tegra186_config = {
.reg_access_always_ok = false,
};
static const struct udevice_id eqos_ids[] = {
{
.compatible = "nvidia,tegra186-eqos",
.data = (ulong)&eqos_tegra186_config
},
{ }
};
U_BOOT_DRIVER(eth_eqos) = {
.name = "eth_eqos",
.id = UCLASS_ETH,
.of_match = eqos_ids,
.probe = eqos_probe,
.remove = eqos_remove,
.ops = &eqos_ops,
.priv_auto_alloc_size = sizeof(struct eqos_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};