px4-firmware/EKF/vel_pos_fusion.cpp

310 lines
12 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file vel_pos_fusion.cpp
* Function for fusing gps and baro measurements/
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include "mathlib.h"
void Ekf::fuseVelPosHeight()
{
bool fuse_map[6] = {}; // map of booleans true when [VN,VE,VD,PN,PE,PD] observations are available
bool innov_check_pass_map[6] = {}; // true when innovations consistency checks pass for [VN,VE,VD,PN,PE,PD] observations
float R[6] = {}; // observation variances for [VN,VE,VD,PN,PE,PD]
float gate_size[6] = {}; // innovation consistency check gate sizes for [VN,VE,VD,PN,PE,PD] observations
float Kfusion[24] = {}; // Kalman gain vector for any single observation - sequential fusion is used
// calculate innovations, innovations gate sizes and observation variances
if (_fuse_hor_vel) {
fuse_map[0] = fuse_map[1] = true;
// horizontal velocity innovations
_vel_pos_innov[0] = _state.vel(0) - _gps_sample_delayed.vel(0);
_vel_pos_innov[1] = _state.vel(1) - _gps_sample_delayed.vel(1);
// observation variance - use receiver reported accuracy with parameter setting the minimum value
R[0] = fmaxf(_params.gps_vel_noise, 0.01f);
R[0] = fmaxf(R[0], _gps_sample_delayed.sacc);
R[0] = R[0] * R[0];
R[1] = R[0];
// innovation gate sizes
gate_size[0] = fmaxf(_params.vel_innov_gate, 1.0f);
gate_size[1] = gate_size[0];
}
if (_fuse_vert_vel) {
fuse_map[2] = true;
// vertical velocity innovation
_vel_pos_innov[2] = _state.vel(2) - _gps_sample_delayed.vel(2);
// observation variance - use receiver reported accuracy with parameter setting the minimum value
R[2] = fmaxf(_params.gps_vel_noise, 0.01f);
// use scaled horizontal speed accuracy assuming typical ratio of VDOP/HDOP
R[2] = 1.5f * fmaxf(R[2], _gps_sample_delayed.sacc);
R[2] = R[2] * R[2];
// innovation gate size
gate_size[2] = fmaxf(_params.vel_innov_gate, 1.0f);
}
if (_fuse_pos) {
fuse_map[3] = fuse_map[4] = true;
// Calculate innovations and observation variance depending on type of observations
// being used
if (_control_status.flags.gps) {
// we are using GPS measurements
float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f);
float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit);
R[3] = math::constrain(_gps_sample_delayed.hacc, lower_limit, upper_limit);
_vel_pos_innov[3] = _state.pos(0) - _gps_sample_delayed.pos(0);
_vel_pos_innov[4] = _state.pos(1) - _gps_sample_delayed.pos(1);
// innovation gate size
gate_size[3] = fmaxf(_params.posNE_innov_gate, 1.0f);
} else if (_control_status.flags.ev_pos) {
// we are using external vision measurements
R[3] = fmaxf(_ev_sample_delayed.posErr, 0.01f);
_vel_pos_innov[3] = _state.pos(0) - _ev_sample_delayed.posNED(0);
_vel_pos_innov[4] = _state.pos(1) - _ev_sample_delayed.posNED(1);
// innovation gate size
gate_size[3] = fmaxf(_params.ev_innov_gate, 1.0f);
} else {
// No observations - use a static position to constrain drift
if (_control_status.flags.in_air && _control_status.flags.tilt_align) {
R[3] = fmaxf(_params.pos_noaid_noise, _params.gps_pos_noise);
} else {
R[3] = 0.5f;
}
_vel_pos_innov[3] = _state.pos(0) - _last_known_posNE(0);
_vel_pos_innov[4] = _state.pos(1) - _last_known_posNE(1);
// glitch protection is not required so set gate to a large value
gate_size[3] = 100.0f;
}
// convert North position noise to variance
R[3] = R[3] * R[3];
// copy North axis values to East axis
R[4] = R[3];
gate_size[4] = gate_size[3];
}
if (_fuse_height) {
if (_control_status.flags.baro_hgt) {
fuse_map[5] = true;
// vertical position innovation - baro measurement has opposite sign to earth z axis
_vel_pos_innov[5] = _state.pos(2) + _baro_sample_delayed.hgt - _baro_hgt_offset - _hgt_sensor_offset;
// observation variance - user parameter defined
R[5] = fmaxf(_params.baro_noise, 0.01f);
R[5] = R[5] * R[5];
// innovation gate size
gate_size[5] = fmaxf(_params.baro_innov_gate, 1.0f);
} else if (_control_status.flags.gps_hgt) {
fuse_map[5] = true;
// vertical position innovation - gps measurement has opposite sign to earth z axis
_vel_pos_innov[5] = _state.pos(2) + _gps_sample_delayed.hgt - _gps_alt_ref - _hgt_sensor_offset;
// observation variance - receiver defined and parameter limited
// use scaled horizontal position accuracy assuming typical ratio of VDOP/HDOP
float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f);
float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit);
R[5] = 1.5f * math::constrain(_gps_sample_delayed.vacc, lower_limit, upper_limit);
R[5] = R[5] * R[5];
// innovation gate size
gate_size[5] = fmaxf(_params.baro_innov_gate, 1.0f);
} else if (_control_status.flags.rng_hgt && (_R_to_earth(2, 2) > 0.7071f)) {
fuse_map[5] = true;
// use range finder with tilt correction
_vel_pos_innov[5] = _state.pos(2) - (-math::max(_range_sample_delayed.rng * _R_to_earth(2, 2),
_params.rng_gnd_clearance));
// observation variance - user parameter defined
R[5] = fmaxf(_params.range_noise, 0.01f);
R[5] = R[5] * R[5];
// innovation gate size
gate_size[5] = fmaxf(_params.range_innov_gate, 1.0f);
} else if (_control_status.flags.ev_hgt) {
fuse_map[5] = true;
// calculate the innovation assuming the external vision observaton is in local NED frame
_vel_pos_innov[5] = _state.pos(2) - _ev_sample_delayed.posNED(2);
// observation variance - defined externally
R[5] = fmaxf(_ev_sample_delayed.posErr, 0.01f);
R[5] = R[5] * R[5];
// innovation gate size
gate_size[5] = fmaxf(_params.ev_innov_gate, 1.0f);
}
}
// calculate innovation test ratios
for (unsigned obs_index = 0; obs_index < 6; obs_index++) {
if (fuse_map[obs_index]) {
// compute the innovation variance SK = HPH + R
unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state
_vel_pos_innov_var[obs_index] = P[state_index][state_index] + R[obs_index];
// Compute the ratio of innovation to gate size
_vel_pos_test_ratio[obs_index] = sq(_vel_pos_innov[obs_index]) / (sq(gate_size[obs_index]) *
_vel_pos_innov_var[obs_index]);
}
}
// check position, velocity and height innovations
// treat 3D velocity, 2D position and height as separate sensors
// always pass position checks if using synthetic position measurements or yet to complete tilt alignment
// always pass height checks if yet to complete tilt alignment
bool vel_check_pass = (_vel_pos_test_ratio[0] <= 1.0f) && (_vel_pos_test_ratio[1] <= 1.0f)
&& (_vel_pos_test_ratio[2] <= 1.0f);
innov_check_pass_map[2] = innov_check_pass_map[1] = innov_check_pass_map[0] = vel_check_pass;
bool pos_check_pass = ((_vel_pos_test_ratio[3] <= 1.0f) && (_vel_pos_test_ratio[4] <= 1.0f)) || !_control_status.flags.tilt_align;
innov_check_pass_map[4] = innov_check_pass_map[3] = pos_check_pass;
innov_check_pass_map[5] = (_vel_pos_test_ratio[5] <= 1.0f) || !_control_status.flags.tilt_align;
// record the successful velocity fusion event
if (vel_check_pass && _fuse_hor_vel) {
_time_last_vel_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_vel_NED = false;
} else if (!vel_check_pass) {
_innov_check_fail_status.flags.reject_vel_NED = true;
}
// record the successful position fusion event
if (pos_check_pass && _fuse_pos) {
_time_last_pos_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_pos_NE = false;
} else if (!pos_check_pass) {
_innov_check_fail_status.flags.reject_pos_NE = true;
}
// record the successful height fusion event
if (innov_check_pass_map[5] && _fuse_height) {
_time_last_hgt_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_pos_D = false;
} else if (!innov_check_pass_map[5]) {
_innov_check_fail_status.flags.reject_pos_D = true;
}
for (unsigned obs_index = 0; obs_index < 6; obs_index++) {
// skip fusion if not requested or checks have failed
if (!fuse_map[obs_index] || !innov_check_pass_map[obs_index]) {
continue;
}
unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state
// calculate kalman gain K = PHS, where S = 1/innovation variance
for (int row = 0; row < _k_num_states; row++) {
Kfusion[row] = P[row][state_index] / _vel_pos_innov_var[obs_index];
}
// update covarinace matrix via Pnew = (I - KH)P
float KHP[_k_num_states][_k_num_states];
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column < _k_num_states; column++) {
KHP[row][column] = Kfusion[row] * P[state_index][column];
}
}
// if the covariance correction will result in a negative variance, then
// the covariance marix is unhealthy and must be corrected
bool healthy = true;
for (int i = 0; i < _k_num_states; i++) {
if (P[i][i] < KHP[i][i]) {
// zero rows and columns
zeroRows(P,i,i);
zeroCols(P,i,i);
//flag as unhealthy
healthy = false;
// update individual measurement health status
if (obs_index == 0) {
_fault_status.flags.bad_vel_N = true;
} else if (obs_index == 1) {
_fault_status.flags.bad_vel_E = true;
} else if (obs_index == 2) {
_fault_status.flags.bad_vel_D = true;
} else if (obs_index == 3) {
_fault_status.flags.bad_pos_N = true;
} else if (obs_index == 4) {
_fault_status.flags.bad_pos_E = true;
} else if (obs_index == 5) {
_fault_status.flags.bad_pos_D = true;
}
} else {
// update individual measurement health status
if (obs_index == 0) {
_fault_status.flags.bad_vel_N = false;
} else if (obs_index == 1) {
_fault_status.flags.bad_vel_E = false;
} else if (obs_index == 2) {
_fault_status.flags.bad_vel_D = false;
} else if (obs_index == 3) {
_fault_status.flags.bad_pos_N = false;
} else if (obs_index == 4) {
_fault_status.flags.bad_pos_E = false;
} else if (obs_index == 5) {
_fault_status.flags.bad_pos_D = false;
}
}
}
// only apply covariance and state corrrections if healthy
if (healthy) {
// apply the covariance corrections
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column < _k_num_states; column++) {
P[row][column] = P[row][column] - KHP[row][column];
}
}
// correct the covariance marix for gross errors
fixCovarianceErrors();
// apply the state corrections
fuse(Kfusion, _vel_pos_innov[obs_index]);
}
}
}