px4-firmware/EKF/ekf.h

334 lines
14 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.h
* Class for core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "estimator_interface.h"
#include "geo.h"
class Ekf : public EstimatorInterface
{
public:
Ekf();
~Ekf();
// initialise variables to sane values (also interface class)
bool init(uint64_t timestamp);
// should be called every time new data is pushed into the filter
bool update();
// gets the innovations of velocity and position measurements
// 0-2 vel, 3-5 pos
void get_vel_pos_innov(float vel_pos_innov[6]);
// gets the innovations of the earth magnetic field measurements
void get_mag_innov(float mag_innov[3]);
// gets the innovations of the heading measurement
void get_heading_innov(float *heading_innov);
// gets the innovation variances of velocity and position measurements
// 0-2 vel, 3-5 pos
void get_vel_pos_innov_var(float vel_pos_innov_var[6]);
// gets the innovation variances of the earth magnetic field measurements
void get_mag_innov_var(float mag_innov_var[3]);
// gets the innovations of airspeed measurement
void get_airspeed_innov(float *airspeed_innov);
// gets the innovation variance of the airspeed measurement
void get_airspeed_innov_var(float *airspeed_innov_var);
// gets the innovation variance of the heading measurement
void get_heading_innov_var(float *heading_innov_var);
// gets the innovation variance of the flow measurement
void get_flow_innov_var(float flow_innov_var[2]);
// gets the innovation of the flow measurement
void get_flow_innov(float flow_innov[2]);
// gets the innovation variance of the HAGL measurement
void get_hagl_innov_var(float *hagl_innov_var);
// gets the innovation of the HAGL measurement
void get_hagl_innov(float *hagl_innov);
// get the state vector at the delayed time horizon
void get_state_delayed(float *state);
// get the diagonal elements of the covariance matrix
void get_covariances(float *covariances);
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
bool collect_gps(uint64_t time_usec, struct gps_message *gps);
bool collect_imu(imuSample &imu);
// get the ekf WGS-84 origin position and height and the system time it was last set
void get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt);
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void get_ekf_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning);
void get_vel_var(Vector3f &vel_var);
void get_pos_var(Vector3f &pos_var);
// return true if the global position estimate is valid
bool global_position_is_valid();
// return true if the etimate is valid
// return the estimated terrain vertical position relative to the NED origin
bool get_terrain_vert_pos(float *ret);
private:
static const uint8_t _k_num_states = 24;
static constexpr float _k_earth_rate = 0.000072921f;
stateSample _state; // state struct of the ekf running at the delayed time horizon
bool _filter_initialised; // true when the EKF sttes and covariances been initialised
bool _earth_rate_initialised; // true when we know the earth rotatin rate (requires GPS)
bool _fuse_height; // baro height data should be fused
bool _fuse_pos; // gps position data should be fused
bool _fuse_hor_vel; // gps horizontal velocity measurement should be fused
bool _fuse_vert_vel; // gps vertical velocity measurement should be fused
bool _fuse_flow; // flow measurement should be fused
bool _fuse_hagl_data; // if true then range data will be fused to estimate terrain height
uint64_t _time_last_fake_gps; // last time in us at which we have faked gps measurement for static mode
uint64_t _time_last_pos_fuse; // time the last fusion of horizontal position measurements was performed (usec)
uint64_t _time_last_vel_fuse; // time the last fusion of velocity measurements was performed (usec)
uint64_t _time_last_hgt_fuse; // time the last fusion of height measurements was performed (usec)
uint64_t _time_last_of_fuse; // time the last fusion of optical flow measurements were performed (usec)
Vector2f _last_known_posNE; // last known local NE position vector (m)
float _last_disarmed_posD; // vertical position recorded at arming (m)
Vector3f _earth_rate_NED; // earth rotation vector (NED) in rad/s
matrix::Dcm<float> _R_prev; // transformation matrix from earth frame to body frame of previous ekf step
float P[_k_num_states][_k_num_states]; // state covariance matrix
float KH[_k_num_states][_k_num_states]; // intermediate variable for the covariance update
float KHP[_k_num_states][_k_num_states]; // intermediate variable for the covariance update
float _vel_pos_innov[6]; // innovations: 0-2 vel, 3-5 pos
float _vel_pos_innov_var[6]; // innovation variances: 0-2 vel, 3-5 pos
float _mag_innov[3]; // earth magnetic field innovations
float _mag_innov_var[3]; // earth magnetic field innovation variance
float _airspeed_innov; // airspeed measurement innovation
float _airspeed_innov_var; // airspeed measurement innovation variance
float _heading_innov; // heading measurement innovation
float _heading_innov_var; // heading measurement innovation variance
Vector3f _tilt_err_vec; // Vector of the most recent attitude error correction from velocity and position fusion
float _tilt_err_length_filt; // filtered length of _tilt_err_vec
// optical flow processing
float _flow_innov[2]; // flow measurement innovation
float _flow_innov_var[2]; // flow innovation variance
Vector2f _flow_gyro_bias; // bias errors in optical flow sensor rate gyro outputs
Vector2f _imu_del_ang_of; // bias corrected XY delta angle measurements accumulated across the same time frame as the optical flow rates
float _delta_time_of; // time in sec that _imu_del_ang_of was accumulated over
float _mag_declination; // magnetic declination used by reset and fusion functions (rad)
// complementary filter states
Vector3f _delta_angle_corr; // delta angle correction vector
Vector3f _delta_vel_corr; // delta velocity correction vector
Vector3f _vel_corr; // velocity correction vector
imuSample _imu_down_sampled; // down sampled imu data (sensor rate -> filter update rate)
Quaternion _q_down_sampled; // down sampled quaternion (tracking delta angles between ekf update steps)
// variables used for the GPS quality checks
float _gpsDriftVelN; // GPS north position derivative (m/s)
float _gpsDriftVelE; // GPS east position derivative (m/s)
float _gps_drift_velD; // GPS down position derivative (m/s)
float _gps_velD_diff_filt; // GPS filtered Down velocity (m/s)
float _gps_velN_filt; // GPS filtered North velocity (m/s)
float _gps_velE_filt; // GPS filtered East velocity (m/s)
uint64_t _last_gps_fail_us; // last system time in usec that the GPS failed it's checks
// Variables used to publish the WGS-84 location of the EKF local NED origin
uint64_t _last_gps_origin_time_us; // time the origin was last set (uSec)
float _gps_alt_ref; // WGS-84 height (m)
// Variables used to initialise the filter states
uint32_t _hgt_counter; // number of height samples taken
float _hgt_filt_state; // filtered height measurement
uint32_t _mag_counter; // number of magnetometer samples taken
uint64_t _time_last_mag; // measurement time of last magnetomter sample
Vector3f _mag_filt_state; // filtered magnetometer measurement
Vector3f _delVel_sum; // summed delta velocity
float _hgt_sensor_offset; // height that needs to be subtracted from the primary height sensor so that it reads zero height at the origin (m)
gps_check_fail_status_u _gps_check_fail_status;
// Terrain height state estimation
float _terrain_vpos; // estimated vertical position of the terrain underneath the vehicle in local NED frame (m)
float _terrain_var; // variance of terrain position estimate (m^2)
float _hagl_innov; // innovation of the last height above terrain measurement (m)
float _hagl_innov_var; // innovation variance for the last height above terrain measurement (m^2)
uint64_t _time_last_hagl_fuse; // last system time in usec that the hagl measurement failed it's checks
bool _terrain_initialised; // true when the terrain estimator has been intialised
// height sensor fault status
bool _baro_hgt_faulty; // true if valid baro data is unavailable for use
bool _gps_hgt_faulty; // true if valid gps height data is unavailable for use
bool _rng_hgt_faulty; // true if valid rnage finder height data is unavailable for use
int _primary_hgt_source; // priary source of height data set at initialisation
float _baro_hgt_offset; // number of metres the baro height origin is above the local NED origin (m)
// update the real time complementary filter states. This includes the prediction
// and the correction step
void calculateOutputStates();
// initialise filter states of both the delayed ekf and the real time complementary filter
bool initialiseFilter(void);
// initialise ekf covariance matrix
void initialiseCovariance();
// predict ekf state
void predictState();
// predict ekf covariance
void predictCovariance();
// ekf sequential fusion of magnetometer measurements
void fuseMag();
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer)
void fuseHeading();
// fuse projecton of magnetometer onto horizontal plane
void fuseMag2D();
// fuse magnetometer declination measurement
void fuseDeclination();
// fuse airspeed measurement
void fuseAirspeed();
// fuse velocity and position measurements (also barometer height)
void fuseVelPosHeight();
// reset velocity states of the ekf
bool resetVelocity();
// fuse optical flow line of sight rate measurements
void fuseOptFlow();
// calculate optical flow bias errors
void calcOptFlowBias();
// initialise the terrain vertical position estimator
// return true if the initialisation is successful
bool initHagl();
// predict the terrain vertical position state and variance
void predictHagl();
// update the terrain vertical position estimate using a height above ground measurement from the range finder
void fuseHagl();
// reset the heading and magnetic field states using the declination and magnetometer measurements
// return true if successful
bool resetMagHeading(Vector3f &mag_init);
// calculate the magnetic declination to be used by the alignment and fusion processing
void calcMagDeclination();
// reset position states of the ekf (only vertical position)
bool resetPosition();
// reset height state of the ekf
void resetHeight();
void makeCovSymetrical();
// limit the diagonal of the covariance matrix
void limitCov();
// make ekf covariance matrix symmetric
void makeSymmetrical();
// constrain the ekf states
void constrainStates();
// generic function which will perform a fusion step given a kalman gain K
// and a scalar innovation value
void fuse(float *K, float innovation);
// calculate the earth rotation vector from a given latitude
void calcEarthRateNED(Vector3f &omega, double lat_rad) const;
// return true id the GPS quality is good enough to set an origin and start aiding
bool gps_is_good(struct gps_message *gps);
// Control the filter fusion modes
void controlFusionModes();
// Determine if we are airborne or motors are armed
void calculateVehicleStatus();
// return the square of two floating point numbers - used in auto coded sections
inline float sq(float var)
{
return var * var;
}
// zero the specified range of rows in the state covariance matrix
void zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last);
// zero the specified range of columns in the state covariance matrix
void zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last);
};