px4-firmware/EKF/vel_pos_fusion.cpp

213 lines
6.9 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file vel_pos_fusion.cpp
* Function for fusing gps and baro measurements/
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include <ecl.h>
#include <mathlib/mathlib.h>
#include "ekf.h"
bool Ekf::fuseHorizontalVelocity(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio) {
innov_var(0) = P(4, 4) + obs_var(0);
innov_var(1) = P(5, 5) + obs_var(1);
test_ratio(0) = fmaxf(sq(innov(0)) / (sq(innov_gate(0)) * innov_var(0)),
sq(innov(1)) / (sq(innov_gate(0)) * innov_var(1)));
const bool innov_check_pass = (test_ratio(0) <= 1.0f);
if (innov_check_pass) {
_time_last_hor_vel_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_hor_vel = false;
fuseVelPosHeight(innov(0), innov_var(0), 0);
fuseVelPosHeight(innov(1), innov_var(1), 1);
return true;
} else {
_innov_check_fail_status.flags.reject_hor_vel = true;
return false;
}
}
bool Ekf::fuseVerticalVelocity(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio) {
innov_var(2) = P(6, 6) + obs_var(2);
test_ratio(1) = sq(innov(2)) / (sq(innov_gate(1)) * innov_var(2));
const bool innov_check_pass = (test_ratio(1) <= 1.0f);
if (innov_check_pass) {
_time_last_ver_vel_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_ver_vel = false;
fuseVelPosHeight(innov(2), innov_var(2), 2);
return true;
} else {
_innov_check_fail_status.flags.reject_ver_vel = true;
return false;
}
}
bool Ekf::fuseHorizontalPosition(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio) {
innov_var(0) = P(7, 7) + obs_var(0);
innov_var(1) = P(8, 8) + obs_var(1);
test_ratio(0) = fmaxf(sq(innov(0)) / (sq(innov_gate(0)) * innov_var(0)),
sq(innov(1)) / (sq(innov_gate(0)) * innov_var(1)));
const bool innov_check_pass = (test_ratio(0) <= 1.0f) || !_control_status.flags.tilt_align;
if (innov_check_pass) {
if (!_fuse_hpos_as_odom) {
_time_last_hor_pos_fuse = _time_last_imu;
} else {
_time_last_delpos_fuse = _time_last_imu;
}
_innov_check_fail_status.flags.reject_hor_pos = false;
fuseVelPosHeight(innov(0), innov_var(0), 3);
fuseVelPosHeight(innov(1), innov_var(1), 4);
return true;
} else {
_innov_check_fail_status.flags.reject_hor_pos = true;
return false;
}
}
bool Ekf::fuseVerticalPosition(const Vector3f &innov, const Vector2f &innov_gate, const Vector3f &obs_var,
Vector3f &innov_var, Vector2f &test_ratio) {
innov_var(2) = P(9, 9) + obs_var(2);
test_ratio(1) = sq(innov(2)) / (sq(innov_gate(1)) * innov_var(2));
const bool innov_check_pass = (test_ratio(1) <= 1.0f) || !_control_status.flags.tilt_align;
if (innov_check_pass) {
_time_last_hgt_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_ver_pos = false;
fuseVelPosHeight(innov(2), innov_var(2), 5);
return true;
} else {
_innov_check_fail_status.flags.reject_ver_pos = true;
return false;
}
}
// Helper function that fuses a single velocity or position measurement
void Ekf::fuseVelPosHeight(const float innov, const float innov_var, const int obs_index) {
float Kfusion[24]; // Kalman gain vector for any single observation - sequential fusion is used.
const unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state
// calculate kalman gain K = PHS, where S = 1/innovation variance
for (int row = 0; row < _k_num_states; row++) {
Kfusion[row] = P(row, state_index) / innov_var;
}
matrix::SquareMatrix<float, _k_num_states> KHP;
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column < _k_num_states; column++) {
KHP(row, column) = Kfusion[row] * P(state_index, column);
}
}
// if the covariance correction will result in a negative variance, then
// the covariance matrix is unhealthy and must be corrected
bool healthy = true;
for (int i = 0; i < _k_num_states; i++) {
if (P(i, i) < KHP(i, i)) {
// zero rows and columns
P.uncorrelateCovarianceSetVariance<1>(i, 0.0f);
healthy = false;
setVelPosFaultStatus(obs_index, true);
} else {
setVelPosFaultStatus(obs_index, false);
}
}
// only apply covariance and state corrections if healthy
if (healthy) {
// apply the covariance corrections
for (unsigned row = 0; row < _k_num_states; row++) {
for (unsigned column = 0; column < _k_num_states; column++) {
P(row, column) = P(row, column) - KHP(row, column);
}
}
// correct the covariance matrix for gross errors
fixCovarianceErrors(true);
// apply the state corrections
fuse(Kfusion, innov);
}
}
void Ekf::setVelPosFaultStatus(const int index, const bool status) {
if (index == 0) {
_fault_status.flags.bad_vel_N = status;
} else if (index == 1) {
_fault_status.flags.bad_vel_E = status;
} else if (index == 2) {
_fault_status.flags.bad_vel_D = status;
} else if (index == 3) {
_fault_status.flags.bad_pos_N = status;
} else if (index == 4) {
_fault_status.flags.bad_pos_E = status;
} else if (index == 5) {
_fault_status.flags.bad_pos_D = status;
}
}