px4-firmware/EKF/ekf.h

221 lines
7.5 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.h
* Class for core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "estimator_interface.h"
class Ekf : public EstimatorInterface
{
public:
Ekf();
~Ekf();
bool init(uint64_t timestamp);
bool update();
// gets the innovations of velocity and position measurements
// 0-2 vel, 3-5 pos
void get_vel_pos_innov(float vel_pos_innov[6]);
// gets the innovations of the earth magnetic field measurements
void get_mag_innov(float mag_innov[3]);
// gets the innovations of the heading measurement
void get_heading_innov(float *heading_innov);
// gets the innovation variances of velocity and position measurements
// 0-2 vel, 3-5 pos
void get_vel_pos_innov_var(float vel_pos_innov_var[6]);
// gets the innovation variances of the earth magnetic field measurements
void get_mag_innov_var(float mag_innov_var[3]);
// gets the innovation variance of the heading measurement
void get_heading_innov_var(float *heading_innov_var);
// get the state vector at the delayed time horizon
void get_state_delayed(float *state);
// get the diagonal elements of the covariance matrix
void get_covariances(float *covariances);
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
bool collect_gps(uint64_t time_usec, struct gps_message *gps);
bool collect_imu(imuSample &imu);
filter_control_status_u _control_status = {};
// get the ekf WGS-84 origin position and height and the system time it was last set
void get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt);
private:
static const uint8_t _k_num_states = 24;
static constexpr float _k_earth_rate = 0.000072921f;
stateSample _state;
bool _filter_initialised;
bool _earth_rate_initialised;
bool _fuse_height; // baro height data should be fused
bool _fuse_pos; // gps position data should be fused
bool _fuse_hor_vel; // gps horizontal velocity measurement should be fused
bool _fuse_vert_vel; // gps vertical velocity measurement should be fused
uint64_t _time_last_fake_gps;
uint64_t _time_last_pos_fuse; // time the last fusion of horizotal position measurements was performed (usec)
uint64_t _time_last_vel_fuse; // time the last fusion of velocity measurements was performed (usec)
uint64_t _time_last_hgt_fuse; // time the last fusion of height measurements was performed (usec)
uint64_t _time_last_of_fuse; // time the last fusion of optical flow measurements were performed (usec)
Vector2f _last_known_posNE; // last known local NE position vector (m)
float _last_disarmed_posD; // vertical position recorded at arming (m)
Vector3f _earth_rate_NED;
matrix::Dcm<float> _R_prev;
float P[_k_num_states][_k_num_states]; // state covariance matrix
float _vel_pos_innov[6]; // innovations: 0-2 vel, 3-5 pos
float _mag_innov[3]; // earth magnetic field innovations
float _heading_innov; // heading measurement innovation
float _vel_pos_innov_var[6]; // innovation variances: 0-2 vel, 3-5 pos
float _mag_innov_var[3]; // earth magnetic field innovation variance
float _heading_innov_var; // heading measurement innovation variance
// complementary filter states
Vector3f _delta_angle_corr;
Vector3f _delta_vel_corr;
Vector3f _vel_corr;
imuSample _imu_down_sampled;
Quaternion _q_down_sampled;
// variables used for the GPS quality checks
float _gpsDriftVelN = 0.0f; // GPS north position derivative (m/s)
float _gpsDriftVelE = 0.0f; // GPS east position derivative (m/s)
float _gps_drift_velD = 0.0f; // GPS down position derivative (m/s)
float _gps_velD_diff_filt = 0.0f; // GPS filtered Down velocity (m/s)
float _gps_velN_filt = 0.0f; // GPS filtered North velocity (m/s)
float _gps_velE_filt = 0.0f; // GPS filtered East velocity (m/s)
uint64_t _last_gps_fail_us = 0; // last system time in usec that the GPS failed it's checks
// Variables used to publish the WGS-84 location of the EKF local NED origin
uint64_t _last_gps_origin_time_us = 0; // time the origin was last set (uSec)
float _gps_alt_ref = 0.0f; // WGS-84 height (m)
// Variables used to initialise the filter states
uint8_t _baro_counter = 0; // number of baro samples averaged
float _baro_sum = 0.0f; // summed baro measurement
uint8_t _mag_counter = 0; // number of magnetometer samples averaged
Vector3f _mag_sum = {}; // summed magnetometer measurement
Vector3f _delVel_sum = {}; // summed delta velocity
float _baro_at_alignment; // baro offset relative to alignment position
gps_check_fail_status_u _gps_check_fail_status;
void calculateOutputStates();
bool initialiseFilter(void);
void initialiseCovariance();
void predictState();
void predictCovariance();
void fuseMag();
void fuseHeading();
void fuseDeclination();
void fuseAirspeed();
void fuseRange();
void fuseVelPosHeight();
void resetVelocity();
void resetPosition();
void resetHeight();
void makeCovSymetrical();
void limitCov();
void printCovToFile(char const *filename);
void assertCovNiceness();
void makeSymmetrical();
void constrainStates();
void fuse(float *K, float innovation);
void printStates();
void printStatesFast();
void calcEarthRateNED(Vector3f &omega, double lat_rad) const;
// return true id the GPS quality is good enough to set an origin and start aiding
bool gps_is_good(struct gps_message *gps);
// Control the filter fusion modes
void controlFusionModes();
// Determine if we are airborne or motors are armed
void calculateVehicleStatus();
// return the square of two foating point numbers - used in autocoded sections
inline float sq(float var)
{
return var * var;
}
};