forked from Archive/PX4-Autopilot
111 lines
3.8 KiB
C++
111 lines
3.8 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2020 PX4 Development Team. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <array>
|
|
|
|
template<typename T>
|
|
std::array<T, 3> get_local_mission_item(const Mission::MissionItem &item, const CoordinateTransformation &ct)
|
|
{
|
|
using GlobalCoordinate = mavsdk::geometry::CoordinateTransformation::GlobalCoordinate;
|
|
GlobalCoordinate global;
|
|
global.latitude_deg = item.latitude_deg;
|
|
global.longitude_deg = item.longitude_deg;
|
|
auto local = ct.local_from_global(global);
|
|
return {static_cast<T>(local.north_m), static_cast<T>(local.east_m), -item.relative_altitude_m};
|
|
}
|
|
|
|
template<typename T>
|
|
std::array<T, 3> get_local_mission_item_from_raw_item(const mavsdk::MissionRaw::MissionItem &item,
|
|
const CoordinateTransformation &ct)
|
|
{
|
|
using GlobalCoordinate = mavsdk::geometry::CoordinateTransformation::GlobalCoordinate;
|
|
GlobalCoordinate global;
|
|
global.latitude_deg = item.x / 1e7;
|
|
global.longitude_deg = item.y / 1e7;
|
|
|
|
|
|
auto local = ct.local_from_global(global);
|
|
return {static_cast<T>(local.north_m), static_cast<T>(local.east_m), -item.z};
|
|
}
|
|
|
|
template<typename T>
|
|
T sq(T x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
template<typename T>
|
|
T norm(const std::array<T, 3> &vec)
|
|
{
|
|
return std::sqrt(sq(vec[0]) + sq(vec[1]) + sq(vec[2]));
|
|
}
|
|
|
|
template<typename T>
|
|
T dot(const std::array<T, 3> &vec1, const std::array<T, 3> &vec2)
|
|
{
|
|
return vec1[0] * vec2[0] + vec1[1] * vec2[1] + vec1[2] * vec2[2];
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
std::array<T, 3> diff(const std::array<T, 3> &vec1, const std::array<T, 3> &vec2)
|
|
{
|
|
return {vec1[0] - vec2[0], vec1[1] - vec2[1], vec1[2] - vec2[2]};
|
|
}
|
|
|
|
template<typename T>
|
|
std::array<T, 3> normalized(const std::array<T, 3> &vec)
|
|
{
|
|
T n = norm(vec);
|
|
|
|
if (n > 1e-6f) {
|
|
return {vec[0] / n, vec[1] / n, vec[2] / n};
|
|
|
|
} else {
|
|
return {0, 0, 0};
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
T point_to_line_distance(const std::array<T, 3> &point, const std::array<T, 3> &line_start,
|
|
const std::array<T, 3> &line_end)
|
|
{
|
|
std::array<T, 3> norm_dir = normalized(diff(line_end, line_start));
|
|
T t = dot(norm_dir, diff(point, line_start));
|
|
|
|
// closest_on_line = line_start + t * norm_dir;
|
|
std::array<T, 3> closest_on_line { line_start[0] + t *norm_dir[0], line_start[1] + t *norm_dir[1], line_start[2] + t *norm_dir[2]};
|
|
|
|
return norm(diff(closest_on_line, point));
|
|
}
|