px4-firmware/apps/ardrone_control/attitude_control.c

350 lines
14 KiB
C

/****************************************************************************
*
* Copyright (C) 2008-2012 PX4 Development Team. All rights reserved.
* Author: @author Thomas Gubler <thomasgubler@student.ethz.ch>
* @author Julian Oes <joes@student.ethz.ch>
* @author Laurens Mackay <mackayl@student.ethz.ch>
* @author Tobias Naegeli <naegelit@student.ethz.ch>
* @author Martin Rutschmann <rutmarti@student.ethz.ch>
* @author Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/*
* @file attitude_control.c
* Implementation of attitude controller
*/
#include "attitude_control.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include "ardrone_motor_control.h"
#include <float.h>
#include <math.h>
#include "pid.h"
#include <arch/board/up_hrt.h>
#define MAX_MOTOR_COUNT 16
void multirotor_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, const struct vehicle_attitude_s *att, const struct vehicle_status_s *status,
bool verbose, float* roll_output, float* pitch_output, float* yaw_output, float* thrust_output)
{
static uint64_t last_run = 0;
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
last_run = hrt_absolute_time();
static int motor_skip_counter = 0;
static PID_t yaw_pos_controller;
static PID_t yaw_speed_controller;
static PID_t pitch_controller;
static PID_t roll_controller;
static float pid_yawpos_lim;
static float pid_yawspeed_lim;
static float pid_att_lim;
static bool initialized = false;
/* initialize the pid controllers when the function is called for the first time */
if (initialized == false) {
pid_init(&yaw_pos_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU],
PID_MODE_DERIVATIV_CALC, 154);
pid_init(&yaw_speed_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU],
PID_MODE_DERIVATIV_CALC, 155);
pid_init(&pitch_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
PID_MODE_DERIVATIV_SET, 156);
pid_init(&roll_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
PID_MODE_DERIVATIV_SET, 157);
pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];
initialized = true;
}
/* load new parameters with lower rate */
if (motor_skip_counter % 50 == 0) {
pid_set_parameters(&yaw_pos_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU]);
pid_set_parameters(&yaw_speed_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU]);
pid_set_parameters(&pitch_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);
pid_set_parameters(&roll_controller,
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);
pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
pid_yawspeed_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
pid_att_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];
}
/*Calculate Controllers*/
//control Nick
float pitch_control = pid_calculate(&pitch_controller, att_sp->pitch_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_YOFFSET],
att->pitch, att->pitchspeed, deltaT);
//control Roll
float roll_control = pid_calculate(&roll_controller, att_sp->roll_body + global_data_parameter_storage->pm.param_values[PARAM_ATT_XOFFSET],
att->roll, att->rollspeed, deltaT);
//control Yaw Speed
float yaw_rate_control = pid_calculate(&yaw_speed_controller, att_sp->yaw_body, att->yawspeed, 0.0f, deltaT); //attitude_setpoint_bodyframe.z is yaw speed!
/*
* compensate the vertical loss of thrust
* when thrust plane has an angle.
* start with a factor of 1.0 (no change)
*/
float zcompensation = 1.0f;
if (fabsf(att->roll) > 1.0f) {
zcompensation *= 1.85081571768f;
} else {
zcompensation *= 1.0f / cosf(att->roll);
}
if (fabsf(att->pitch) > 1.0f) {
zcompensation *= 1.85081571768f;
} else {
zcompensation *= 1.0f / cosf(att->pitch);
}
float motor_thrust = 0.0f;
// FLYING MODES
motor_thrust = att_sp->thrust;
//printf("mot0: %3.1f\n", motor_thrust);
/* compensate thrust vector for roll / pitch contributions */
motor_thrust *= zcompensation;
/* limit yaw rate output */
if (yaw_rate_control > pid_yawspeed_lim) {
yaw_rate_control = pid_yawspeed_lim;
yaw_speed_controller.saturated = 1;
}
if (yaw_rate_control < -pid_yawspeed_lim) {
yaw_rate_control = -pid_yawspeed_lim;
yaw_speed_controller.saturated = 1;
}
if (pitch_control > pid_att_lim) {
pitch_control = pid_att_lim;
pitch_controller.saturated = 1;
}
if (pitch_control < -pid_att_lim) {
pitch_control = -pid_att_lim;
pitch_controller.saturated = 1;
}
if (roll_control > pid_att_lim) {
roll_control = pid_att_lim;
roll_controller.saturated = 1;
}
if (roll_control < -pid_att_lim) {
roll_control = -pid_att_lim;
roll_controller.saturated = 1;
}
*roll_output = roll_control;
*pitch_output = pitch_control;
*yaw_output = yaw_rate_control;
*thrust_output = motor_thrust;
}
void ardrone_mixing_and_output(int ardrone_write, float roll_control, float pitch_control, float yaw_control, float motor_thrust, bool verbose) {
unsigned int motor_skip_counter = 0;
const float min_thrust = 0.02f; /**< 2% minimum thrust */
const float max_thrust = 1.0f; /**< 100% max thrust */
const float scaling = 512.0f; /**< 100% thrust equals a value of 512 */
const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */
const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */
/* initialize all fields to zero */
uint16_t motor_pwm[MAX_MOTOR_COUNT] = {0};
float motor_calc[MAX_MOTOR_COUNT] = {0};
float output_band = 0.0f;
float band_factor = 0.75f;
const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */
float yaw_factor = 1.0f;
if (motor_thrust <= min_thrust) {
motor_thrust = min_thrust;
output_band = 0.0f;
} else if (motor_thrust < startpoint_full_control && motor_thrust > min_thrust) {
output_band = band_factor * (motor_thrust - min_thrust);
} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_thrust - band_factor * startpoint_full_control) {
output_band = band_factor * startpoint_full_control;
} else if (motor_thrust >= max_thrust - band_factor * startpoint_full_control) {
output_band = band_factor * (max_thrust - motor_thrust);
}
if (verbose && motor_skip_counter % 100 == 0) {
printf("1: mot1: %3.1f band: %3.1f r: %3.1f n: %3.1f y: %3.1f\n", (double)motor_thrust, (double)output_band, (double)roll_control, (double)pitch_control, (double)yaw_control);
}
//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer
// FRONT (MOTOR 1)
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control);
// RIGHT (MOTOR 2)
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control);
// BACK (MOTOR 3)
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control);
// LEFT (MOTOR 4)
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control);
// if we are not in the output band
if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band
&& motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band
&& motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band
&& motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) {
yaw_factor = 0.5f;
// FRONT (MOTOR 1)
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control * yaw_factor);
// RIGHT (MOTOR 2)
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control * yaw_factor);
// BACK (MOTOR 3)
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control * yaw_factor);
// LEFT (MOTOR 4)
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control * yaw_factor);
}
if (verbose && motor_skip_counter % 100 == 0) {
printf("2: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]);
}
for (int i = 0; i < 4; i++) {
//check for limits
if (motor_calc[i] < motor_thrust - output_band) {
motor_calc[i] = motor_thrust - output_band;
}
if (motor_calc[i] > motor_thrust + output_band) {
motor_calc[i] = motor_thrust + output_band;
}
}
if (verbose && motor_skip_counter % 100 == 0) {
printf("3: band lim: m1: %3.1f m2: %3.1f m3: %3.1f m4: %3.1f\n", (double)motor_calc[0], (double)motor_calc[1], (double)motor_calc[2], (double)motor_calc[3]);
}
/* set the motor values */
/* scale up from 0..1 to 10..512) */
motor_pwm[0] = (uint16_t) (motor_calc[0] * ((float)max_gas - min_gas) + min_gas);
motor_pwm[1] = (uint16_t) (motor_calc[1] * ((float)max_gas - min_gas) + min_gas);
motor_pwm[2] = (uint16_t) (motor_calc[2] * ((float)max_gas - min_gas) + min_gas);
motor_pwm[3] = (uint16_t) (motor_calc[3] * ((float)max_gas - min_gas) + min_gas);
if (verbose && motor_skip_counter % 100 == 0) {
printf("4: scaled: m1: %d m2: %d m3: %d m4: %d\n", motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
}
/* Keep motors spinning while armed and prevent overflows */
/* Failsafe logic - should never be necessary */
motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10;
motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10;
motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10;
motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10;
/* Failsafe logic - should never be necessary */
motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512;
motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512;
motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512;
motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512;
/* send motors via UART */
if (verbose && motor_skip_counter % 100 == 0) printf("5: mot: %3.1f-%i-%i-%i-%i\n\n", (double)motor_thrust, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
motor_skip_counter++;
}