forked from Archive/PX4-Autopilot
159 lines
5.7 KiB
C++
159 lines
5.7 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file terrain_estimator.cpp
|
|
* Function for fusing rangefinder measurements to estimate terrain vertical position/
|
|
*
|
|
* @author Paul Riseborough <p_riseborough@live.com.au>
|
|
*
|
|
*/
|
|
|
|
#include "ekf.h"
|
|
#include "mathlib.h"
|
|
|
|
bool Ekf::initHagl()
|
|
{
|
|
// get most recent range measurement from buffer
|
|
rangeSample latest_measurement = _range_buffer.get_newest();
|
|
|
|
if ((_time_last_imu - latest_measurement.time_us) < 2e5) {
|
|
// if we have a fresh measurement, use it to initialise the terrain estimator
|
|
_terrain_vpos = _state.pos(2) + latest_measurement.rng;
|
|
// initialise state variance to variance of measurement
|
|
_terrain_var = sq(_params.range_noise);
|
|
// success
|
|
return true;
|
|
|
|
} else if (!_control_status.flags.in_air) {
|
|
// if on ground we assume a ground clearance
|
|
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance;
|
|
// Use the ground clearance value as our uncertainty
|
|
_terrain_var = sq(_params.rng_gnd_clearance);
|
|
// ths is a guess
|
|
return false;
|
|
|
|
} else {
|
|
// no information - cannot initialise
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Ekf::predictHagl()
|
|
{
|
|
// predict the state variance growth
|
|
// the state is the vertical position of the terrain underneath the vehicle
|
|
|
|
// process noise due to errors in vehicle height estimate
|
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise);
|
|
|
|
// process noise due to terrain gradient
|
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient) * (sq(_state.vel(0)) + sq(_state.vel(
|
|
1)));
|
|
|
|
// limit the variance to prevent it becoming badly conditioned
|
|
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f);
|
|
}
|
|
|
|
void Ekf::fuseHagl()
|
|
{
|
|
// If the vehicle is excessively tilted, do not try to fuse range finder observations
|
|
if (_R_to_earth(2, 2) > 0.7071f) {
|
|
// get a height above ground measurement from the range finder assuming a flat earth
|
|
float meas_hagl = _range_sample_delayed.rng * _R_to_earth(2, 2);
|
|
|
|
// predict the hagl from the vehicle position and terrain height
|
|
float pred_hagl = _terrain_vpos - _state.pos(2);
|
|
|
|
// calculate the innovation
|
|
_hagl_innov = pred_hagl - meas_hagl;
|
|
|
|
// calculate the observation variance adding the variance of the vehicles own height uncertainty and factoring in the effect of tilt on measurement error
|
|
float obs_variance = fmaxf(P[9][9], 0.0f) + sq(_params.range_noise / _R_to_earth(2, 2));
|
|
|
|
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion
|
|
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance);
|
|
|
|
// perform an innovation consistency check and only fuse data if it passes
|
|
float gate_size = fmaxf(_params.range_innov_gate, 1.0f);
|
|
float test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var);
|
|
|
|
if (test_ratio <= 1.0f) {
|
|
// calculate the Kalman gain
|
|
float gain = _terrain_var / _hagl_innov_var;
|
|
// correct the state
|
|
_terrain_vpos -= gain * _hagl_innov;
|
|
// correct the variance
|
|
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f);
|
|
// record last successful fusion event
|
|
_time_last_hagl_fuse = _time_last_imu;
|
|
_innov_check_fail_status.flags.reject_hagl = false;
|
|
|
|
} else {
|
|
_innov_check_fail_status.flags.reject_hagl = true;
|
|
|
|
}
|
|
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// return true if the estimate is fresh
|
|
// return the estimated vertical position of the terrain relative to the NED origin
|
|
bool Ekf::get_terrain_vert_pos(float *ret)
|
|
{
|
|
memcpy(ret, &_terrain_vpos, sizeof(float));
|
|
|
|
// The height is useful if the uncertainty in terrain height is significantly smaller than than the estimated height above terrain
|
|
bool accuracy_useful = (sqrtf(_terrain_var) < 0.2f * fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance));
|
|
|
|
if (_time_last_imu - _time_last_hagl_fuse < 1e6 || accuracy_useful) {
|
|
return true;
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Ekf::get_hagl_innov(float *hagl_innov)
|
|
{
|
|
memcpy(hagl_innov, &_hagl_innov, sizeof(_hagl_innov));
|
|
}
|
|
|
|
|
|
void Ekf::get_hagl_innov_var(float *hagl_innov_var)
|
|
{
|
|
memcpy(hagl_innov_var, &_hagl_innov_var, sizeof(_hagl_innov_var));
|
|
}
|