px4-firmware/apps/sdlog/sdlog.c

807 lines
25 KiB
C

/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file sdlog.c
* @author Lorenz Meier <lm@inf.ethz.ch>
*
* Simple SD logger for flight data. Buffers new sensor values and
* does the heavy SD I/O in a low-priority worker thread.
*/
#include <nuttx/config.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/prctl.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdio.h>
#include <poll.h>
#include <stdlib.h>
#include <string.h>
#include <systemlib/err.h>
#include <unistd.h>
#include <drivers/drv_hrt.h>
#include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/actuator_outputs.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/actuator_controls_effective.h>
#include <uORB/topics/vehicle_command.h>
#include <uORB/topics/vehicle_local_position.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_gps_position.h>
#include <uORB/topics/vehicle_vicon_position.h>
#include <uORB/topics/optical_flow.h>
#include <uORB/topics/battery_status.h>
#include <uORB/topics/differential_pressure.h>
#include <systemlib/systemlib.h>
#include "sdlog_ringbuffer.h"
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int deamon_task; /**< Handle of deamon task / thread */
static const int MAX_NO_LOGFOLDER = 999; /**< Maximum number of log folders */
static const char *mountpoint = "/fs/microsd";
static const char *mfile_in = "/etc/logging/logconv.m";
int sysvector_file = -1;
struct sdlog_logbuffer lb;
/* mutex / condition to synchronize threads */
pthread_mutex_t sysvector_mutex;
pthread_cond_t sysvector_cond;
/**
* System state vector log buffer writing
*/
static void *sdlog_sysvector_write_thread(void *arg);
/**
* Create the thread to write the system vector
*/
pthread_t sysvector_write_start(struct sdlog_logbuffer *logbuf);
/**
* SD log management function.
*/
__EXPORT int sdlog_main(int argc, char *argv[]);
/**
* Mainloop of sd log deamon.
*/
int sdlog_thread_main(int argc, char *argv[]);
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static int file_exist(const char *filename);
static int file_copy(const char *file_old, const char *file_new);
/**
* Print the current status.
*/
static void print_sdlog_status(void);
/**
* Create folder for current logging session.
*/
static int create_logfolder(char *folder_path);
static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
errx(1, "usage: sdlog {start|stop|status} [-p <additional params>]\n\n");
}
// XXX turn this into a C++ class
unsigned sensor_combined_bytes = 0;
unsigned actuator_outputs_bytes = 0;
unsigned actuator_controls_bytes = 0;
unsigned sysvector_bytes = 0;
unsigned blackbox_file_bytes = 0;
uint64_t starttime = 0;
/**
* The sd log deamon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_spawn().
*/
int sdlog_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "start")) {
if (thread_running) {
printf("sdlog already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
deamon_task = task_spawn("sdlog",
SCHED_DEFAULT,
SCHED_PRIORITY_DEFAULT - 30,
4096,
sdlog_thread_main,
(argv) ? (const char **)&argv[2] : (const char **)NULL);
exit(0);
}
if (!strcmp(argv[1], "stop")) {
if (!thread_running) {
printf("\tsdlog is not started\n");
}
thread_should_exit = true;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
print_sdlog_status();
} else {
printf("\tsdlog not started\n");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
int create_logfolder(char *folder_path)
{
/* make folder on sdcard */
uint16_t foldernumber = 1; // start with folder 0001
int mkdir_ret;
/* look for the next folder that does not exist */
while (foldernumber < MAX_NO_LOGFOLDER) {
/* set up file path: e.g. /mnt/sdcard/sensorfile0001.txt */
sprintf(folder_path, "%s/session%04u", mountpoint, foldernumber);
mkdir_ret = mkdir(folder_path, S_IRWXU | S_IRWXG | S_IRWXO);
/* the result is -1 if the folder exists */
if (mkdir_ret == 0) {
/* folder does not exist, success */
/* now copy the Matlab/Octave file */
char mfile_out[100];
sprintf(mfile_out, "%s/session%04u/run_to_plot_data.m", mountpoint, foldernumber);
int ret = file_copy(mfile_in, mfile_out);
if (!ret) {
warnx("copied m file to %s", mfile_out);
} else {
warnx("failed copying m file from %s to\n %s", mfile_in, mfile_out);
}
break;
} else if (mkdir_ret == -1) {
/* folder exists already */
foldernumber++;
continue;
} else {
warn("failed creating new folder");
return -1;
}
}
if (foldernumber >= MAX_NO_LOGFOLDER) {
/* we should not end up here, either we have more than MAX_NO_LOGFOLDER on the SD card, or another problem */
warn("all %d possible folders exist already", MAX_NO_LOGFOLDER);
return -1;
}
return 0;
}
static void *
sdlog_sysvector_write_thread(void *arg)
{
/* set name */
prctl(PR_SET_NAME, "sdlog microSD I/O", 0);
struct sdlog_logbuffer *logbuf = (struct sdlog_logbuffer *)arg;
int poll_count = 0;
struct sdlog_sysvector sysvect;
memset(&sysvect, 0, sizeof(sysvect));
while (!thread_should_exit) {
/* make sure threads are synchronized */
pthread_mutex_lock(&sysvector_mutex);
/* only wait if no data is available to process */
if (sdlog_logbuffer_is_empty(logbuf)) {
/* blocking wait for new data at this line */
pthread_cond_wait(&sysvector_cond, &sysvector_mutex);
}
/* only quickly load data, do heavy I/O a few lines down */
int ret = sdlog_logbuffer_read(logbuf, &sysvect);
/* continue */
pthread_mutex_unlock(&sysvector_mutex);
if (ret == OK) {
sysvector_bytes += write(sysvector_file, (const char *)&sysvect, sizeof(sysvect));
}
if (poll_count % 100 == 0) {
fsync(sysvector_file);
}
poll_count++;
}
fsync(sysvector_file);
return OK;
}
pthread_t
sysvector_write_start(struct sdlog_logbuffer *logbuf)
{
pthread_attr_t receiveloop_attr;
pthread_attr_init(&receiveloop_attr);
struct sched_param param;
/* low priority, as this is expensive disk I/O */
param.sched_priority = SCHED_PRIORITY_DEFAULT - 40;
(void)pthread_attr_setschedparam(&receiveloop_attr, &param);
pthread_attr_setstacksize(&receiveloop_attr, 2048);
pthread_t thread;
pthread_create(&thread, &receiveloop_attr, sdlog_sysvector_write_thread, logbuf);
return thread;
// XXX we have to destroy the attr at some point
}
int sdlog_thread_main(int argc, char *argv[])
{
warnx("starting\n");
if (file_exist(mountpoint) != OK) {
errx(1, "logging mount point %s not present, exiting.", mountpoint);
}
char folder_path[64];
if (create_logfolder(folder_path))
errx(1, "unable to create logging folder, exiting.");
/* create sensorfile */
int sensorfile = -1;
int actuator_outputs_file = -1;
int actuator_controls_file = -1;
FILE *gpsfile;
FILE *blackbox_file;
// FILE *vehiclefile;
char path_buf[64] = ""; // string to hold the path to the sensorfile
warnx("logging to directory %s\n", folder_path);
/* set up file path: e.g. /mnt/sdcard/session0001/sensor_combined.bin */
sprintf(path_buf, "%s/%s.bin", folder_path, "sensor_combined");
if (0 == (sensorfile = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
errx(1, "opening %s failed.\n", path_buf);
}
// /* set up file path: e.g. /mnt/sdcard/session0001/actuator_outputs0.bin */
// sprintf(path_buf, "%s/%s.bin", folder_path, "actuator_outputs0");
// if (0 == (actuator_outputs_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
// errx(1, "opening %s failed.\n", path_buf);
// }
/* set up file path: e.g. /mnt/sdcard/session0001/actuator_controls0.bin */
sprintf(path_buf, "%s/%s.bin", folder_path, "sysvector");
if (0 == (sysvector_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
errx(1, "opening %s failed.\n", path_buf);
}
/* set up file path: e.g. /mnt/sdcard/session0001/actuator_controls0.bin */
sprintf(path_buf, "%s/%s.bin", folder_path, "actuator_controls0");
if (0 == (actuator_controls_file = open(path_buf, O_CREAT | O_WRONLY | O_DSYNC))) {
errx(1, "opening %s failed.\n", path_buf);
}
/* set up file path: e.g. /mnt/sdcard/session0001/gps.txt */
sprintf(path_buf, "%s/%s.txt", folder_path, "gps");
if (NULL == (gpsfile = fopen(path_buf, "w"))) {
errx(1, "opening %s failed.\n", path_buf);
}
int gpsfile_no = fileno(gpsfile);
/* set up file path: e.g. /mnt/sdcard/session0001/blackbox.txt */
sprintf(path_buf, "%s/%s.txt", folder_path, "blackbox");
if (NULL == (blackbox_file = fopen(path_buf, "w"))) {
errx(1, "opening %s failed.\n", path_buf);
}
int blackbox_file_no = fileno(blackbox_file);
/* --- IMPORTANT: DEFINE NUMBER OF ORB STRUCTS TO WAIT FOR HERE --- */
/* number of messages */
const ssize_t fdsc = 25;
/* Sanity check variable and index */
ssize_t fdsc_count = 0;
/* file descriptors to wait for */
struct pollfd fds[fdsc];
struct {
struct sensor_combined_s raw;
struct vehicle_attitude_s att;
struct vehicle_attitude_setpoint_s att_sp;
struct actuator_outputs_s act_outputs;
struct actuator_controls_s act_controls;
struct actuator_controls_effective_s act_controls_effective;
struct vehicle_command_s cmd;
struct vehicle_local_position_s local_pos;
struct vehicle_global_position_s global_pos;
struct vehicle_gps_position_s gps_pos;
struct vehicle_vicon_position_s vicon_pos;
struct optical_flow_s flow;
struct battery_status_s batt;
struct differential_pressure_s diff_pressure;
} buf;
memset(&buf, 0, sizeof(buf));
struct {
int cmd_sub;
int sensor_sub;
int att_sub;
int spa_sub;
int act_0_sub;
int controls_0_sub;
int controls_effective_0_sub;
int local_pos_sub;
int global_pos_sub;
int gps_pos_sub;
int vicon_pos_sub;
int flow_sub;
int batt_sub;
int diff_pressure_sub;
} subs;
/* --- MANAGEMENT - LOGGING COMMAND --- */
/* subscribe to ORB for sensors raw */
subs.cmd_sub = orb_subscribe(ORB_ID(vehicle_command));
fds[fdsc_count].fd = subs.cmd_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- SENSORS RAW VALUE --- */
/* subscribe to ORB for sensors raw */
subs.sensor_sub = orb_subscribe(ORB_ID(sensor_combined));
fds[fdsc_count].fd = subs.sensor_sub;
/* rate-limit raw data updates to 200Hz */
orb_set_interval(subs.sensor_sub, 5);
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- ATTITUDE VALUE --- */
/* subscribe to ORB for attitude */
subs.att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
fds[fdsc_count].fd = subs.att_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- ATTITUDE SETPOINT VALUE --- */
/* subscribe to ORB for attitude setpoint */
/* struct already allocated */
subs.spa_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
fds[fdsc_count].fd = subs.spa_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/** --- ACTUATOR OUTPUTS --- */
subs.act_0_sub = orb_subscribe(ORB_ID(actuator_outputs_0));
fds[fdsc_count].fd = subs.act_0_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- ACTUATOR CONTROL VALUE --- */
/* subscribe to ORB for actuator control */
subs.controls_0_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
fds[fdsc_count].fd = subs.controls_0_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- ACTUATOR CONTROL EFFECTIVE VALUE --- */
/* subscribe to ORB for actuator control */
subs.controls_effective_0_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE);
fds[fdsc_count].fd = subs.controls_effective_0_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- LOCAL POSITION --- */
/* subscribe to ORB for local position */
subs.local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
fds[fdsc_count].fd = subs.local_pos_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- GLOBAL POSITION --- */
/* subscribe to ORB for global position */
subs.global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
fds[fdsc_count].fd = subs.global_pos_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- GPS POSITION --- */
/* subscribe to ORB for global position */
subs.gps_pos_sub = orb_subscribe(ORB_ID(vehicle_gps_position));
fds[fdsc_count].fd = subs.gps_pos_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- VICON POSITION --- */
/* subscribe to ORB for vicon position */
subs.vicon_pos_sub = orb_subscribe(ORB_ID(vehicle_vicon_position));
fds[fdsc_count].fd = subs.vicon_pos_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- FLOW measurements --- */
/* subscribe to ORB for flow measurements */
subs.flow_sub = orb_subscribe(ORB_ID(optical_flow));
fds[fdsc_count].fd = subs.flow_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- BATTERY STATUS --- */
/* subscribe to ORB for flow measurements */
subs.batt_sub = orb_subscribe(ORB_ID(battery_status));
fds[fdsc_count].fd = subs.batt_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* --- DIFFERENTIAL PRESSURE --- */
/* subscribe to ORB for flow measurements */
subs.diff_pressure_sub = orb_subscribe(ORB_ID(differential_pressure));
fds[fdsc_count].fd = subs.diff_pressure_sub;
fds[fdsc_count].events = POLLIN;
fdsc_count++;
/* WARNING: If you get the error message below,
* then the number of registered messages (fdsc)
* differs from the number of messages in the above list.
*/
if (fdsc_count > fdsc) {
warn("WARNING: Not enough space for poll fds allocated. Check %s:%d.\n", __FILE__, __LINE__);
fdsc_count = fdsc;
}
/*
* set up poll to block for new data,
* wait for a maximum of 1000 ms (1 second)
*/
// const int timeout = 1000;
thread_running = true;
/* initialize log buffer with a size of 10 */
sdlog_logbuffer_init(&lb, 10);
/* initialize thread synchronization */
pthread_mutex_init(&sysvector_mutex, NULL);
pthread_cond_init(&sysvector_cond, NULL);
/* start logbuffer emptying thread */
pthread_t sysvector_pthread = sysvector_write_start(&lb);
starttime = hrt_absolute_time();
// XXX clock the log for now with the gyro output rate / 2
struct pollfd gyro_fd;
gyro_fd.fd = subs.sensor_sub;
gyro_fd.events = POLLIN;
/* log every 2nd value (skip one) */
int skip_value = 0;
/* track skipping */
int skip_count = 0;
while (!thread_should_exit) {
// XXX only use gyro for now
int poll_ret = poll(&gyro_fd, 1, 1000);
// int poll_ret = poll(fds, fdsc_count, timeout);
/* handle the poll result */
if (poll_ret == 0) {
/* XXX this means none of our providers is giving us data - might be an error? */
} else if (poll_ret < 0) {
/* XXX this is seriously bad - should be an emergency */
} else {
/* always copy sensors raw data into local buffer, since poll flags won't clear else */
orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.controls_0_sub, &buf.act_controls);
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE, subs.controls_effective_0_sub, &buf.act_controls_effective);
/* copy actuator data into local buffer */
orb_copy(ORB_ID(actuator_outputs_0), subs.act_0_sub, &buf.act_outputs);
orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.spa_sub, &buf.att_sp);
orb_copy(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf.gps_pos);
orb_copy(ORB_ID(vehicle_local_position), subs.local_pos_sub, &buf.local_pos);
orb_copy(ORB_ID(vehicle_global_position), subs.global_pos_sub, &buf.global_pos);
orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);
orb_copy(ORB_ID(vehicle_vicon_position), subs.vicon_pos_sub, &buf.vicon_pos);
orb_copy(ORB_ID(optical_flow), subs.flow_sub, &buf.flow);
if (skip_count < skip_value) {
skip_count++;
/* do not log data */
continue;
} else {
/* log data, reset */
skip_count = 0;
}
// int ifds = 0;
// if (poll_count % 5000 == 0) {
// fsync(sensorfile);
// fsync(actuator_outputs_file);
// fsync(actuator_controls_file);
// fsync(blackbox_file_no);
// }
// /* --- VEHICLE COMMAND VALUE --- */
// if (fds[ifds++].revents & POLLIN) {
// /* copy command into local buffer */
// orb_copy(ORB_ID(vehicle_command), subs.cmd_sub, &buf.cmd);
// blackbox_file_bytes += fprintf(blackbox_file, "[%10.4f\tVCMD] CMD #%d [%f\t%f\t%f\t%f\t%f\t%f\t%f]\n", hrt_absolute_time()/1000000.0d,
// buf.cmd.command, (double)buf.cmd.param1, (double)buf.cmd.param2, (double)buf.cmd.param3, (double)buf.cmd.param4,
// (double)buf.cmd.param5, (double)buf.cmd.param6, (double)buf.cmd.param7);
// }
// /* --- SENSORS RAW VALUE --- */
// if (fds[ifds++].revents & POLLIN) {
// /* copy sensors raw data into local buffer */
// orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
// /* write out */
// sensor_combined_bytes += write(sensorfile, (const char*)&(buf.raw), sizeof(buf.raw));
// }
// /* --- ATTITUDE VALUE --- */
// if (fds[ifds++].revents & POLLIN) {
// /* copy attitude data into local buffer */
// orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);
// }
// /* --- VEHICLE ATTITUDE SETPOINT --- */
// if (fds[ifds++].revents & POLLIN) {
// /* copy local position data into local buffer */
// orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.spa_sub, &buf.att_sp);
// }
// /* --- ACTUATOR OUTPUTS 0 --- */
// if (fds[ifds++].revents & POLLIN) {
// /* copy actuator data into local buffer */
// orb_copy(ORB_ID(actuator_outputs_0), subs.act_0_sub, &buf.act_outputs);
// /* write out */
// // actuator_outputs_bytes += write(actuator_outputs_file, (const char*)&buf.act_outputs, sizeof(buf.act_outputs));
// }
// /* --- ACTUATOR CONTROL --- */
// if (fds[ifds++].revents & POLLIN) {
// orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.controls0_sub, &buf.act_controls);
// /* write out */
// actuator_controls_bytes += write(actuator_controls_file, (const char*)&buf.act_controls, sizeof(buf.act_controls));
// }
/* copy sensors raw data into local buffer */
orb_copy(ORB_ID(sensor_combined), subs.sensor_sub, &buf.raw);
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, subs.controls_0_sub, &buf.act_controls);
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS_EFFECTIVE, subs.controls_effective_0_sub, &buf.act_controls_effective);
/* copy actuator data into local buffer */
orb_copy(ORB_ID(actuator_outputs_0), subs.act_0_sub, &buf.act_outputs);
orb_copy(ORB_ID(vehicle_attitude_setpoint), subs.spa_sub, &buf.att_sp);
orb_copy(ORB_ID(vehicle_gps_position), subs.gps_pos_sub, &buf.gps_pos);
orb_copy(ORB_ID(vehicle_local_position), subs.local_pos_sub, &buf.local_pos);
orb_copy(ORB_ID(vehicle_global_position), subs.global_pos_sub, &buf.global_pos);
orb_copy(ORB_ID(vehicle_attitude), subs.att_sub, &buf.att);
orb_copy(ORB_ID(vehicle_vicon_position), subs.vicon_pos_sub, &buf.vicon_pos);
orb_copy(ORB_ID(optical_flow), subs.flow_sub, &buf.flow);
orb_copy(ORB_ID(differential_pressure), subs.diff_pressure_sub, &buf.diff_pressure);
orb_copy(ORB_ID(battery_status), subs.batt_sub, &buf.batt);
struct sdlog_sysvector sysvect = {
.timestamp = buf.raw.timestamp,
.gyro = {buf.raw.gyro_rad_s[0], buf.raw.gyro_rad_s[1], buf.raw.gyro_rad_s[2]},
.accel = {buf.raw.accelerometer_m_s2[0], buf.raw.accelerometer_m_s2[1], buf.raw.accelerometer_m_s2[2]},
.mag = {buf.raw.magnetometer_ga[0], buf.raw.magnetometer_ga[1], buf.raw.magnetometer_ga[2]},
.baro = buf.raw.baro_pres_mbar,
.baro_alt = buf.raw.baro_alt_meter,
.baro_temp = buf.raw.baro_temp_celcius,
.control = {buf.act_controls.control[0], buf.act_controls.control[1], buf.act_controls.control[2], buf.act_controls.control[3]},
.actuators = {
buf.act_outputs.output[0], buf.act_outputs.output[1], buf.act_outputs.output[2], buf.act_outputs.output[3],
buf.act_outputs.output[4], buf.act_outputs.output[5], buf.act_outputs.output[6], buf.act_outputs.output[7]
},
.vbat = buf.batt.voltage_v,
.bat_current = buf.batt.current_a,
.bat_discharged = buf.batt.discharged_mah,
.adc = {buf.raw.adc_voltage_v[0], buf.raw.adc_voltage_v[1], buf.raw.adc_voltage_v[2]},
.local_position = {buf.local_pos.x, buf.local_pos.y, buf.local_pos.z},
.gps_raw_position = {buf.gps_pos.lat, buf.gps_pos.lon, buf.gps_pos.alt},
.attitude = {buf.att.pitch, buf.att.roll, buf.att.yaw},
.rotMatrix = {buf.att.R[0][0], buf.att.R[0][1], buf.att.R[0][2], buf.att.R[1][0], buf.att.R[1][1], buf.att.R[1][2], buf.att.R[2][0], buf.att.R[2][1], buf.att.R[2][2]},
.vicon = {buf.vicon_pos.x, buf.vicon_pos.y, buf.vicon_pos.z, buf.vicon_pos.roll, buf.vicon_pos.pitch, buf.vicon_pos.yaw},
.control_effective = {buf.act_controls_effective.control_effective[0], buf.act_controls_effective.control_effective[1], buf.act_controls_effective.control_effective[2], buf.act_controls_effective.control_effective[3]},
.flow = {buf.flow.flow_raw_x, buf.flow.flow_raw_y, buf.flow.flow_comp_x_m, buf.flow.flow_comp_y_m, buf.flow.ground_distance_m, buf.flow.quality},
.diff_pressure = buf.diff_pressure.differential_pressure_mbar,
.ind_airspeed = buf.diff_pressure.indicated_airspeed_m_s,
.true_airspeed = buf.diff_pressure.true_airspeed_m_s
};
/* put into buffer for later IO */
pthread_mutex_lock(&sysvector_mutex);
sdlog_logbuffer_write(&lb, &sysvect);
/* signal the other thread new data, but not yet unlock */
pthread_cond_signal(&sysvector_cond);
/* unlock, now the writer thread may run */
pthread_mutex_unlock(&sysvector_mutex);
}
}
print_sdlog_status();
/* wait for write thread to return */
(void)pthread_join(sysvector_pthread, NULL);
pthread_mutex_destroy(&sysvector_mutex);
pthread_cond_destroy(&sysvector_cond);
warnx("exiting.\n");
close(sensorfile);
close(actuator_outputs_file);
close(actuator_controls_file);
fclose(gpsfile);
fclose(blackbox_file);
thread_running = false;
return 0;
}
void print_sdlog_status()
{
unsigned bytes = sysvector_bytes + sensor_combined_bytes + actuator_outputs_bytes + blackbox_file_bytes + actuator_controls_bytes;
float mebibytes = bytes / 1024.0f / 1024.0f;
float seconds = ((float)(hrt_absolute_time() - starttime)) / 1000000.0f;
warnx("wrote %4.2f MiB (average %5.3f MiB/s).\n", (double)mebibytes, (double)(mebibytes / seconds));
}
/**
* @return 0 if file exists
*/
int file_exist(const char *filename)
{
struct stat buffer;
return stat(filename, &buffer);
}
int file_copy(const char *file_old, const char *file_new)
{
FILE *source, *target;
source = fopen(file_old, "r");
int ret = 0;
if (source == NULL) {
warnx("failed opening input file to copy");
return 1;
}
target = fopen(file_new, "w");
if (target == NULL) {
fclose(source);
warnx("failed to open output file to copy");
return 1;
}
char buf[128];
int nread;
while ((nread = fread(buf, 1, sizeof(buf), source)) > 0) {
int ret = fwrite(buf, 1, nread, target);
if (ret <= 0) {
warnx("error writing file");
ret = 1;
break;
}
}
fsync(fileno(target));
fclose(source);
fclose(target);
return ret;
}