px4-firmware/EKF/terrain_estimator.cpp

318 lines
12 KiB
C++

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file terrain_estimator.cpp
* Function for fusing rangefinder measurements to estimate terrain vertical position/
*
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::initHagl()
{
bool initialized = false;
if (!_control_status.flags.in_air) {
// if on ground, do not trust the range sensor, but assume a ground clearance
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance;
// use the ground clearance value as our uncertainty
_terrain_var = sq(_params.rng_gnd_clearance);
_time_last_fake_hagl_fuse = _time_last_imu;
initialized = true;
} else if (shouldUseRangeFinderForHagl()
&& _range_sensor.isDataHealthy()) {
// if we have a fresh measurement, use it to initialise the terrain estimator
_terrain_vpos = _state.pos(2) + _range_sensor.getDistBottom();
// initialise state variance to variance of measurement
_terrain_var = sq(_params.range_noise);
// success
initialized = true;
} else if (shouldUseOpticalFlowForHagl()
&& _flow_for_terrain_data_ready) {
// initialise terrain vertical position to origin as this is the best guess we have
_terrain_vpos = fmaxf(0.0f, _state.pos(2));
_terrain_var = 100.0f;
initialized = true;
} else {
// no information - cannot initialise
}
if (initialized) {
// has initialized with valid data
_time_last_hagl_fuse = _time_last_imu;
}
return initialized;
}
bool Ekf::shouldUseRangeFinderForHagl() const
{
return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseRangeFinder);
}
bool Ekf::shouldUseOpticalFlowForHagl() const
{
return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseOpticalFlow);
}
void Ekf::runTerrainEstimator()
{
// If we are on ground, store the local position and time to use as a reference
if (!_control_status.flags.in_air) {
_last_on_ground_posD = _state.pos(2);
}
// Perform initialisation check and
// on ground, continuously reset the terrain estimator
if (!_terrain_initialised || !_control_status.flags.in_air) {
_terrain_initialised = initHagl();
} else {
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle
// process noise due to errors in vehicle height estimate
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise);
// process noise due to terrain gradient
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient)
* (sq(_state.vel(0)) + sq(_state.vel(1)));
// limit the variance to prevent it becoming badly conditioned
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f);
// Fuse range finder data if available
if (shouldUseRangeFinderForHagl()
&& _range_sensor.isDataHealthy()) {
fuseHagl();
}
if (shouldUseOpticalFlowForHagl()
&& _flow_for_terrain_data_ready) {
fuseFlowForTerrain();
_flow_for_terrain_data_ready = false;
}
// constrain _terrain_vpos to be a minimum of _params.rng_gnd_clearance larger than _state.pos(2)
if (_terrain_vpos - _state.pos(2) < _params.rng_gnd_clearance) {
_terrain_vpos = _params.rng_gnd_clearance + _state.pos(2);
}
}
updateTerrainValidity();
}
void Ekf::fuseHagl()
{
// get a height above ground measurement from the range finder assuming a flat earth
const float meas_hagl = _range_sensor.getDistBottom();
// predict the hagl from the vehicle position and terrain height
const float pred_hagl = _terrain_vpos - _state.pos(2);
// calculate the innovation
_hagl_innov = pred_hagl - meas_hagl;
// calculate the observation variance adding the variance of the vehicles own height uncertainty
const float obs_variance = fmaxf(P(9,9) * _params.vehicle_variance_scaler, 0.0f)
+ sq(_params.range_noise)
+ sq(_params.range_noise_scaler * _range_sensor.getRange());
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance);
// perform an innovation consistency check and only fuse data if it passes
const float gate_size = fmaxf(_params.range_innov_gate, 1.0f);
_hagl_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var);
if (_hagl_test_ratio <= 1.0f) {
// calculate the Kalman gain
float gain = _terrain_var / _hagl_innov_var;
// correct the state
_terrain_vpos -= gain * _hagl_innov;
// correct the variance
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f);
// record last successful fusion event
_time_last_hagl_fuse = _time_last_imu;
_innov_check_fail_status.flags.reject_hagl = false;
} else {
// If we have been rejecting range data for too long, reset to measurement
if (isTimedOut(_time_last_hagl_fuse, (uint64_t)10E6)) {
_terrain_vpos = _state.pos(2) + meas_hagl;
_terrain_var = obs_variance;
} else {
_innov_check_fail_status.flags.reject_hagl = true;
}
}
}
void Ekf::fuseFlowForTerrain()
{
// calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed
// correct for gyro bias errors in the data used to do the motion compensation
// Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis.
const Vector2f opt_flow_rate = Vector2f(_flow_compensated_XY_rad) / _flow_sample_delayed.dt + Vector2f(_flow_gyro_bias);
// get latest estimated orientation
const float q0 = _state.quat_nominal(0);
const float q1 = _state.quat_nominal(1);
const float q2 = _state.quat_nominal(2);
const float q3 = _state.quat_nominal(3);
// calculate the optical flow observation variance
const float R_LOS = calcOptFlowMeasVar();
// get rotation matrix from earth to body
const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal);
// calculate the sensor position relative to the IMU
const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body;
// calculate the velocity of the sensor relative to the imu in body frame
// Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign
const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body;
// calculate the velocity of the sensor in the earth frame
const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body;
// rotate into body frame
const Vector3f vel_body = earth_to_body * vel_rel_earth;
const float t0 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3;
// constrain terrain to minimum allowed value and predict height above ground
_terrain_vpos = fmaxf(_terrain_vpos, _params.rng_gnd_clearance + _state.pos(2));
const float pred_hagl = _terrain_vpos - _state.pos(2);
// Calculate observation matrix for flow around the vehicle x axis
const float Hx = vel_body(1) * t0 / (pred_hagl * pred_hagl);
// Constrain terrain variance to be non-negative
_terrain_var = fmaxf(_terrain_var, 0.0f);
// Cacluate innovation variance
_flow_innov_var[0] = Hx * Hx * _terrain_var + R_LOS;
// calculate the kalman gain for the flow x measurement
const float Kx = _terrain_var * Hx / _flow_innov_var[0];
// calculate prediced optical flow about x axis
const float pred_flow_x = vel_body(1) * earth_to_body(2, 2) / pred_hagl;
// calculate flow innovation (x axis)
_flow_innov[0] = pred_flow_x - opt_flow_rate(0);
// calculate correction term for terrain variance
const float KxHxP = Kx * Hx * _terrain_var;
// innovation consistency check
const float gate_size = fmaxf(_params.flow_innov_gate, 1.0f);
float flow_test_ratio = sq(_flow_innov[0]) / (sq(gate_size) * _flow_innov_var[0]);
// do not perform measurement update if badly conditioned
if (flow_test_ratio <= 1.0f) {
_terrain_vpos += Kx * _flow_innov[0];
// guard against negative variance
_terrain_var = fmaxf(_terrain_var - KxHxP, 0.0f);
_time_last_of_fuse = _time_last_imu;
}
// Calculate observation matrix for flow around the vehicle y axis
const float Hy = -vel_body(0) * t0 / (pred_hagl * pred_hagl);
// Calculuate innovation variance
_flow_innov_var[1] = Hy * Hy * _terrain_var + R_LOS;
// calculate the kalman gain for the flow y measurement
const float Ky = _terrain_var * Hy / _flow_innov_var[1];
// calculate prediced optical flow about y axis
const float pred_flow_y = -vel_body(0) * earth_to_body(2, 2) / pred_hagl;
// calculate flow innovation (y axis)
_flow_innov[1] = pred_flow_y - opt_flow_rate(1);
// calculate correction term for terrain variance
const float KyHyP = Ky * Hy * _terrain_var;
// innovation consistency check
flow_test_ratio = sq(_flow_innov[1]) / (sq(gate_size) * _flow_innov_var[1]);
if (flow_test_ratio <= 1.0f) {
_terrain_vpos += Ky * _flow_innov[1];
// guard against negative variance
_terrain_var = fmaxf(_terrain_var - KyHyP, 0.0f);
_time_last_of_fuse = _time_last_imu;
}
}
bool Ekf::isTerrainEstimateValid() const
{
return _hagl_valid;
}
void Ekf::updateTerrainValidity()
{
// we have been fusing range finder measurements in the last 5 seconds
const bool recent_range_fusion = isRecent(_time_last_hagl_fuse, (uint64_t)5e6);
// we have been fusing optical flow measurements for terrain estimation within the last 5 seconds
// this can only be the case if the main filter does not fuse optical flow
const bool recent_flow_for_terrain_fusion = isRecent(_time_last_of_fuse, (uint64_t)5e6)
&& !_control_status.flags.opt_flow;
_hagl_valid = (_terrain_initialised && (recent_range_fusion || recent_flow_for_terrain_fusion));
_hagl_sensor_status.flags.range_finder = shouldUseRangeFinderForHagl()
&& recent_range_fusion
&& (_time_last_fake_hagl_fuse != _time_last_hagl_fuse);
_hagl_sensor_status.flags.flow = shouldUseOpticalFlowForHagl()
&& recent_flow_for_terrain_fusion;
}
// get the estimated vertical position of the terrain relative to the NED origin
float Ekf::getTerrainVertPos() const
{
return _terrain_vpos;
}