forked from Archive/PX4-Autopilot
318 lines
12 KiB
C++
318 lines
12 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file terrain_estimator.cpp
|
|
* Function for fusing rangefinder measurements to estimate terrain vertical position/
|
|
*
|
|
* @author Paul Riseborough <p_riseborough@live.com.au>
|
|
*
|
|
*/
|
|
|
|
#include "ekf.h"
|
|
#include <ecl.h>
|
|
#include <mathlib/mathlib.h>
|
|
|
|
bool Ekf::initHagl()
|
|
{
|
|
bool initialized = false;
|
|
|
|
if (!_control_status.flags.in_air) {
|
|
// if on ground, do not trust the range sensor, but assume a ground clearance
|
|
_terrain_vpos = _state.pos(2) + _params.rng_gnd_clearance;
|
|
// use the ground clearance value as our uncertainty
|
|
_terrain_var = sq(_params.rng_gnd_clearance);
|
|
_time_last_fake_hagl_fuse = _time_last_imu;
|
|
initialized = true;
|
|
|
|
} else if (shouldUseRangeFinderForHagl()
|
|
&& _range_sensor.isDataHealthy()) {
|
|
// if we have a fresh measurement, use it to initialise the terrain estimator
|
|
_terrain_vpos = _state.pos(2) + _range_sensor.getDistBottom();
|
|
// initialise state variance to variance of measurement
|
|
_terrain_var = sq(_params.range_noise);
|
|
// success
|
|
initialized = true;
|
|
|
|
} else if (shouldUseOpticalFlowForHagl()
|
|
&& _flow_for_terrain_data_ready) {
|
|
// initialise terrain vertical position to origin as this is the best guess we have
|
|
_terrain_vpos = fmaxf(0.0f, _state.pos(2));
|
|
_terrain_var = 100.0f;
|
|
initialized = true;
|
|
|
|
} else {
|
|
// no information - cannot initialise
|
|
}
|
|
|
|
if (initialized) {
|
|
// has initialized with valid data
|
|
_time_last_hagl_fuse = _time_last_imu;
|
|
}
|
|
|
|
return initialized;
|
|
}
|
|
|
|
bool Ekf::shouldUseRangeFinderForHagl() const
|
|
{
|
|
return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseRangeFinder);
|
|
}
|
|
|
|
bool Ekf::shouldUseOpticalFlowForHagl() const
|
|
{
|
|
return (_params.terrain_fusion_mode & TerrainFusionMask::TerrainFuseOpticalFlow);
|
|
}
|
|
|
|
void Ekf::runTerrainEstimator()
|
|
{
|
|
// If we are on ground, store the local position and time to use as a reference
|
|
if (!_control_status.flags.in_air) {
|
|
_last_on_ground_posD = _state.pos(2);
|
|
}
|
|
|
|
// Perform initialisation check and
|
|
// on ground, continuously reset the terrain estimator
|
|
if (!_terrain_initialised || !_control_status.flags.in_air) {
|
|
_terrain_initialised = initHagl();
|
|
|
|
} else {
|
|
|
|
// predict the state variance growth where the state is the vertical position of the terrain underneath the vehicle
|
|
|
|
// process noise due to errors in vehicle height estimate
|
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_p_noise);
|
|
|
|
// process noise due to terrain gradient
|
|
_terrain_var += sq(_imu_sample_delayed.delta_vel_dt * _params.terrain_gradient)
|
|
* (sq(_state.vel(0)) + sq(_state.vel(1)));
|
|
|
|
// limit the variance to prevent it becoming badly conditioned
|
|
_terrain_var = math::constrain(_terrain_var, 0.0f, 1e4f);
|
|
|
|
// Fuse range finder data if available
|
|
if (shouldUseRangeFinderForHagl()
|
|
&& _range_sensor.isDataHealthy()) {
|
|
fuseHagl();
|
|
}
|
|
|
|
if (shouldUseOpticalFlowForHagl()
|
|
&& _flow_for_terrain_data_ready) {
|
|
fuseFlowForTerrain();
|
|
_flow_for_terrain_data_ready = false;
|
|
}
|
|
|
|
// constrain _terrain_vpos to be a minimum of _params.rng_gnd_clearance larger than _state.pos(2)
|
|
if (_terrain_vpos - _state.pos(2) < _params.rng_gnd_clearance) {
|
|
_terrain_vpos = _params.rng_gnd_clearance + _state.pos(2);
|
|
}
|
|
}
|
|
|
|
updateTerrainValidity();
|
|
}
|
|
|
|
void Ekf::fuseHagl()
|
|
{
|
|
// get a height above ground measurement from the range finder assuming a flat earth
|
|
const float meas_hagl = _range_sensor.getDistBottom();
|
|
|
|
// predict the hagl from the vehicle position and terrain height
|
|
const float pred_hagl = _terrain_vpos - _state.pos(2);
|
|
|
|
// calculate the innovation
|
|
_hagl_innov = pred_hagl - meas_hagl;
|
|
|
|
// calculate the observation variance adding the variance of the vehicles own height uncertainty
|
|
const float obs_variance = fmaxf(P(9,9) * _params.vehicle_variance_scaler, 0.0f)
|
|
+ sq(_params.range_noise)
|
|
+ sq(_params.range_noise_scaler * _range_sensor.getRange());
|
|
|
|
// calculate the innovation variance - limiting it to prevent a badly conditioned fusion
|
|
_hagl_innov_var = fmaxf(_terrain_var + obs_variance, obs_variance);
|
|
|
|
// perform an innovation consistency check and only fuse data if it passes
|
|
const float gate_size = fmaxf(_params.range_innov_gate, 1.0f);
|
|
_hagl_test_ratio = sq(_hagl_innov) / (sq(gate_size) * _hagl_innov_var);
|
|
|
|
if (_hagl_test_ratio <= 1.0f) {
|
|
// calculate the Kalman gain
|
|
float gain = _terrain_var / _hagl_innov_var;
|
|
// correct the state
|
|
_terrain_vpos -= gain * _hagl_innov;
|
|
// correct the variance
|
|
_terrain_var = fmaxf(_terrain_var * (1.0f - gain), 0.0f);
|
|
// record last successful fusion event
|
|
_time_last_hagl_fuse = _time_last_imu;
|
|
_innov_check_fail_status.flags.reject_hagl = false;
|
|
|
|
} else {
|
|
// If we have been rejecting range data for too long, reset to measurement
|
|
if (isTimedOut(_time_last_hagl_fuse, (uint64_t)10E6)) {
|
|
_terrain_vpos = _state.pos(2) + meas_hagl;
|
|
_terrain_var = obs_variance;
|
|
|
|
} else {
|
|
_innov_check_fail_status.flags.reject_hagl = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Ekf::fuseFlowForTerrain()
|
|
{
|
|
// calculate optical LOS rates using optical flow rates that have had the body angular rate contribution removed
|
|
// correct for gyro bias errors in the data used to do the motion compensation
|
|
// Note the sign convention used: A positive LOS rate is a RH rotation of the scene about that axis.
|
|
const Vector2f opt_flow_rate = Vector2f(_flow_compensated_XY_rad) / _flow_sample_delayed.dt + Vector2f(_flow_gyro_bias);
|
|
|
|
// get latest estimated orientation
|
|
const float q0 = _state.quat_nominal(0);
|
|
const float q1 = _state.quat_nominal(1);
|
|
const float q2 = _state.quat_nominal(2);
|
|
const float q3 = _state.quat_nominal(3);
|
|
|
|
// calculate the optical flow observation variance
|
|
const float R_LOS = calcOptFlowMeasVar();
|
|
|
|
// get rotation matrix from earth to body
|
|
const Dcmf earth_to_body = quatToInverseRotMat(_state.quat_nominal);
|
|
|
|
// calculate the sensor position relative to the IMU
|
|
const Vector3f pos_offset_body = _params.flow_pos_body - _params.imu_pos_body;
|
|
|
|
// calculate the velocity of the sensor relative to the imu in body frame
|
|
// Note: _flow_sample_delayed.gyro_xyz is the negative of the body angular velocity, thus use minus sign
|
|
const Vector3f vel_rel_imu_body = Vector3f(-_flow_sample_delayed.gyro_xyz / _flow_sample_delayed.dt) % pos_offset_body;
|
|
|
|
// calculate the velocity of the sensor in the earth frame
|
|
const Vector3f vel_rel_earth = _state.vel + _R_to_earth * vel_rel_imu_body;
|
|
|
|
// rotate into body frame
|
|
const Vector3f vel_body = earth_to_body * vel_rel_earth;
|
|
|
|
const float t0 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3;
|
|
|
|
// constrain terrain to minimum allowed value and predict height above ground
|
|
_terrain_vpos = fmaxf(_terrain_vpos, _params.rng_gnd_clearance + _state.pos(2));
|
|
const float pred_hagl = _terrain_vpos - _state.pos(2);
|
|
|
|
// Calculate observation matrix for flow around the vehicle x axis
|
|
const float Hx = vel_body(1) * t0 / (pred_hagl * pred_hagl);
|
|
|
|
// Constrain terrain variance to be non-negative
|
|
_terrain_var = fmaxf(_terrain_var, 0.0f);
|
|
|
|
// Cacluate innovation variance
|
|
_flow_innov_var[0] = Hx * Hx * _terrain_var + R_LOS;
|
|
|
|
// calculate the kalman gain for the flow x measurement
|
|
const float Kx = _terrain_var * Hx / _flow_innov_var[0];
|
|
|
|
// calculate prediced optical flow about x axis
|
|
const float pred_flow_x = vel_body(1) * earth_to_body(2, 2) / pred_hagl;
|
|
|
|
// calculate flow innovation (x axis)
|
|
_flow_innov[0] = pred_flow_x - opt_flow_rate(0);
|
|
|
|
// calculate correction term for terrain variance
|
|
const float KxHxP = Kx * Hx * _terrain_var;
|
|
|
|
// innovation consistency check
|
|
const float gate_size = fmaxf(_params.flow_innov_gate, 1.0f);
|
|
float flow_test_ratio = sq(_flow_innov[0]) / (sq(gate_size) * _flow_innov_var[0]);
|
|
|
|
// do not perform measurement update if badly conditioned
|
|
if (flow_test_ratio <= 1.0f) {
|
|
_terrain_vpos += Kx * _flow_innov[0];
|
|
// guard against negative variance
|
|
_terrain_var = fmaxf(_terrain_var - KxHxP, 0.0f);
|
|
_time_last_of_fuse = _time_last_imu;
|
|
}
|
|
|
|
// Calculate observation matrix for flow around the vehicle y axis
|
|
const float Hy = -vel_body(0) * t0 / (pred_hagl * pred_hagl);
|
|
|
|
// Calculuate innovation variance
|
|
_flow_innov_var[1] = Hy * Hy * _terrain_var + R_LOS;
|
|
|
|
// calculate the kalman gain for the flow y measurement
|
|
const float Ky = _terrain_var * Hy / _flow_innov_var[1];
|
|
|
|
// calculate prediced optical flow about y axis
|
|
const float pred_flow_y = -vel_body(0) * earth_to_body(2, 2) / pred_hagl;
|
|
|
|
// calculate flow innovation (y axis)
|
|
_flow_innov[1] = pred_flow_y - opt_flow_rate(1);
|
|
|
|
// calculate correction term for terrain variance
|
|
const float KyHyP = Ky * Hy * _terrain_var;
|
|
|
|
// innovation consistency check
|
|
flow_test_ratio = sq(_flow_innov[1]) / (sq(gate_size) * _flow_innov_var[1]);
|
|
|
|
if (flow_test_ratio <= 1.0f) {
|
|
_terrain_vpos += Ky * _flow_innov[1];
|
|
// guard against negative variance
|
|
_terrain_var = fmaxf(_terrain_var - KyHyP, 0.0f);
|
|
_time_last_of_fuse = _time_last_imu;
|
|
}
|
|
}
|
|
|
|
bool Ekf::isTerrainEstimateValid() const
|
|
{
|
|
return _hagl_valid;
|
|
}
|
|
|
|
void Ekf::updateTerrainValidity()
|
|
{
|
|
// we have been fusing range finder measurements in the last 5 seconds
|
|
const bool recent_range_fusion = isRecent(_time_last_hagl_fuse, (uint64_t)5e6);
|
|
|
|
// we have been fusing optical flow measurements for terrain estimation within the last 5 seconds
|
|
// this can only be the case if the main filter does not fuse optical flow
|
|
const bool recent_flow_for_terrain_fusion = isRecent(_time_last_of_fuse, (uint64_t)5e6)
|
|
&& !_control_status.flags.opt_flow;
|
|
|
|
_hagl_valid = (_terrain_initialised && (recent_range_fusion || recent_flow_for_terrain_fusion));
|
|
|
|
_hagl_sensor_status.flags.range_finder = shouldUseRangeFinderForHagl()
|
|
&& recent_range_fusion
|
|
&& (_time_last_fake_hagl_fuse != _time_last_hagl_fuse);
|
|
_hagl_sensor_status.flags.flow = shouldUseOpticalFlowForHagl()
|
|
&& recent_flow_for_terrain_fusion;
|
|
}
|
|
|
|
// get the estimated vertical position of the terrain relative to the NED origin
|
|
float Ekf::getTerrainVertPos() const
|
|
{
|
|
return _terrain_vpos;
|
|
}
|