forked from Archive/PX4-Autopilot
593 lines
26 KiB
C++
593 lines
26 KiB
C++
/****************************************************************************
|
|
*
|
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/**
|
|
* @file estimator_interface.h
|
|
* Definition of base class for attitude estimators
|
|
*
|
|
* @author Roman Bast <bapstroman@gmail.com>
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <ecl.h>
|
|
#include "common.h"
|
|
#include "RingBuffer.h"
|
|
#include "AlphaFilter.hpp"
|
|
#include "imu_down_sampler.hpp"
|
|
#include "EKFGSF_yaw.h"
|
|
#include "sensor_range_finder.hpp"
|
|
|
|
#include <geo/geo.h>
|
|
#include <matrix/math.hpp>
|
|
#include <mathlib/mathlib.h>
|
|
|
|
using namespace estimator;
|
|
|
|
class EstimatorInterface
|
|
{
|
|
|
|
public:
|
|
EstimatorInterface():_imu_down_sampler(FILTER_UPDATE_PERIOD_S){};
|
|
virtual ~EstimatorInterface() = default;
|
|
|
|
virtual bool init(uint64_t timestamp) = 0;
|
|
virtual void reset() = 0;
|
|
|
|
virtual bool update() = 0;
|
|
|
|
virtual void getGpsVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const = 0;
|
|
virtual void getGpsVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const = 0;
|
|
virtual void getGpsVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const = 0;
|
|
|
|
virtual void getEvVelPosInnov(float hvel[2], float &vvel, float hpos[2], float &vpos) const = 0;
|
|
virtual void getEvVelPosInnovVar(float hvel[2], float &vvel, float hpos[2], float &vpos) const = 0;
|
|
virtual void getEvVelPosInnovRatio(float &hvel, float &vvel, float &hpos, float &vpos) const = 0;
|
|
|
|
virtual void getBaroHgtInnov(float &baro_hgt_innov) const = 0;
|
|
virtual void getBaroHgtInnovVar(float &baro_hgt_innov_var) const = 0;
|
|
virtual void getBaroHgtInnovRatio(float &baro_hgt_innov_ratio) const = 0;
|
|
|
|
virtual void getRngHgtInnov(float &rng_hgt_innov) const = 0;
|
|
virtual void getRngHgtInnovVar(float &rng_hgt_innov_var) const = 0;
|
|
virtual void getRngHgtInnovRatio(float &rng_hgt_innov_ratio) const = 0;
|
|
|
|
virtual void getAuxVelInnov(float aux_vel_innov[2]) const = 0;
|
|
virtual void getAuxVelInnovVar(float aux_vel_innov[2]) const = 0;
|
|
virtual void getAuxVelInnovRatio(float &aux_vel_innov_ratio) const = 0;
|
|
|
|
virtual void getFlowInnov(float flow_innov[2]) const = 0;
|
|
virtual void getFlowInnovVar(float flow_innov_var[2]) const = 0;
|
|
virtual void getFlowInnovRatio(float &flow_innov_ratio) const = 0;
|
|
|
|
virtual void getHeadingInnov(float &heading_innov) const = 0;
|
|
virtual void getHeadingInnovVar(float &heading_innov_var) const = 0;
|
|
virtual void getHeadingInnovRatio(float &heading_innov_ratio) const = 0;
|
|
|
|
virtual void getMagInnov(float mag_innov[3]) const = 0;
|
|
virtual void getMagInnovVar(float mag_innov_var[3]) const = 0;
|
|
virtual void getMagInnovRatio(float &mag_innov_ratio) const = 0;
|
|
|
|
virtual void getDragInnov(float drag_innov[2]) const = 0;
|
|
virtual void getDragInnovVar(float drag_innov_var[2]) const = 0;
|
|
virtual void getDragInnovRatio(float drag_innov_ratio[2]) const = 0;
|
|
|
|
virtual void getAirspeedInnov(float &airspeed_innov) const = 0;
|
|
virtual void getAirspeedInnovVar(float &get_airspeed_innov_var) const = 0;
|
|
virtual void getAirspeedInnovRatio(float &airspeed_innov_ratio) const = 0;
|
|
|
|
virtual void getBetaInnov(float &beta_innov) const = 0;
|
|
virtual void getBetaInnovVar(float &get_beta_innov_var) const = 0;
|
|
virtual void getBetaInnovRatio(float &beta_innov_ratio) const = 0;
|
|
|
|
virtual void getHaglInnov(float &hagl_innov) const = 0;
|
|
virtual void getHaglInnovVar(float &hagl_innov_var) const = 0;
|
|
virtual void getHaglInnovRatio(float &hagl_innov_ratio) const = 0;
|
|
|
|
virtual matrix::Vector<float, 24> getStateAtFusionHorizonAsVector() const = 0;
|
|
|
|
virtual Vector2f getWindVelocity() const = 0;
|
|
|
|
virtual Vector2f getWindVelocityVariance() const = 0;
|
|
|
|
virtual void get_true_airspeed(float *tas) = 0;
|
|
|
|
// return an array containing the output predictor angular, velocity and position tracking
|
|
// error magnitudes (rad), (m/s), (m)
|
|
virtual Vector3f getOutputTrackingError() const = 0;
|
|
|
|
/*
|
|
Returns following IMU vibration metrics in the following array locations
|
|
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
|
|
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
|
|
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
|
|
*/
|
|
virtual Vector3f getImuVibrationMetrics() const = 0;
|
|
|
|
/*
|
|
First argument returns GPS drift metrics in the following array locations
|
|
0 : Horizontal position drift rate (m/s)
|
|
1 : Vertical position drift rate (m/s)
|
|
2 : Filtered horizontal velocity (m/s)
|
|
Second argument returns true when IMU movement is blocking the drift calculation
|
|
Function returns true if the metrics have been updated and not returned previously by this function
|
|
*/
|
|
virtual bool get_gps_drift_metrics(float drift[3], bool *blocked) = 0;
|
|
|
|
// get the ekf WGS-84 origin position and height and the system time it was last set
|
|
// return true if the origin is valid
|
|
virtual bool get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) = 0;
|
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
|
|
virtual void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) = 0;
|
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
|
|
virtual void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) = 0;
|
|
|
|
// get the 1-sigma horizontal and vertical velocity uncertainty
|
|
virtual void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) = 0;
|
|
|
|
// get the vehicle control limits required by the estimator to keep within sensor limitations
|
|
virtual void get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) = 0;
|
|
|
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
|
|
virtual bool collect_gps(const gps_message &gps) = 0;
|
|
|
|
void setIMUData(const imuSample &imu_sample);
|
|
|
|
|
|
void setMagData(const magSample &mag_sample);
|
|
|
|
void setGpsData(const gps_message &gps);
|
|
|
|
void setBaroData(const baroSample &baro_sample);
|
|
|
|
void setAirspeedData(const airspeedSample &airspeed_sample);
|
|
|
|
void setRangeData(const rangeSample& range_sample);
|
|
|
|
// if optical flow sensor gyro delta angles are not available, set gyro_xyz vector fields to NaN and the EKF will use its internal delta angle data instead
|
|
void setOpticalFlowData(const flowSample& flow);
|
|
|
|
// set external vision position and attitude data
|
|
void setExtVisionData(const extVisionSample& evdata);
|
|
|
|
void setAuxVelData(const auxVelSample& auxvel_sample);
|
|
|
|
// return a address to the parameters struct
|
|
// in order to give access to the application
|
|
parameters *getParamHandle() {return &_params;}
|
|
|
|
// set vehicle landed status data
|
|
void set_in_air_status(bool in_air) {_control_status.flags.in_air = in_air;}
|
|
|
|
/*
|
|
Reset all IMU bias states and covariances to initial alignment values.
|
|
Use when the IMU sensor has changed.
|
|
Returns true if reset performed, false if rejected due to less than 10 seconds lapsed since last reset.
|
|
*/
|
|
virtual bool reset_imu_bias() = 0;
|
|
|
|
// return true if the attitude is usable
|
|
bool attitude_valid() { return ISFINITE(_output_new.quat_nominal(0)) && _control_status.flags.tilt_align; }
|
|
|
|
// get vehicle landed status data
|
|
bool get_in_air_status() {return _control_status.flags.in_air;}
|
|
|
|
// get wind estimation status
|
|
bool get_wind_status() { return _control_status.flags.wind; }
|
|
|
|
// set vehicle is fixed wing status
|
|
void set_is_fixed_wing(bool is_fixed_wing) {_control_status.flags.fixed_wing = is_fixed_wing;}
|
|
|
|
// set flag if synthetic sideslip measurement should be fused
|
|
void set_fuse_beta_flag(bool fuse_beta) {_control_status.flags.fuse_beta = (fuse_beta && _control_status.flags.in_air);}
|
|
|
|
// set flag if static pressure rise due to ground effect is expected
|
|
// use _params.gnd_effect_deadzone to adjust for expected rise in static pressure
|
|
// flag will clear after GNDEFFECT_TIMEOUT uSec
|
|
void set_gnd_effect_flag(bool gnd_effect)
|
|
{
|
|
_control_status.flags.gnd_effect = gnd_effect;
|
|
_time_last_gnd_effect_on = _time_last_imu;
|
|
}
|
|
|
|
// set air density used by the multi-rotor specific drag force fusion
|
|
void set_air_density(float air_density) {_air_density = air_density;}
|
|
|
|
// set sensor limitations reported by the rangefinder
|
|
void set_rangefinder_limits(float min_distance, float max_distance)
|
|
{
|
|
_range_sensor.setLimits(min_distance, max_distance);
|
|
}
|
|
|
|
// set sensor limitations reported by the optical flow sensor
|
|
void set_optical_flow_limits(float max_flow_rate, float min_distance, float max_distance)
|
|
{
|
|
_flow_max_rate = max_flow_rate;
|
|
_flow_min_distance = min_distance;
|
|
_flow_max_distance = max_distance;
|
|
}
|
|
|
|
// return true if the global position estimate is valid
|
|
virtual bool global_position_is_valid() = 0;
|
|
|
|
// the flags considered are opt_flow, gps, ev_vel and ev_pos
|
|
bool isOnlyActiveSourceOfHorizontalAiding(bool aiding_flag) const;
|
|
|
|
/*
|
|
* Check if there are any other active source of horizontal aiding
|
|
* Warning: does not tell if the selected source is
|
|
* active, use isOnlyActiveSourceOfHorizontalAiding() for this
|
|
*
|
|
* The flags considered are opt_flow, gps, ev_vel and ev_pos
|
|
*
|
|
* @param aiding_flag a flag in _control_status.flags
|
|
* @return true if an other source than aiding_flag is active
|
|
*/
|
|
bool isOtherSourceOfHorizontalAidingThan(bool aiding_flag) const;
|
|
|
|
// Return true if at least one source of horizontal aiding is active
|
|
// the flags considered are opt_flow, gps, ev_vel and ev_pos
|
|
bool isHorizontalAidingActive() const;
|
|
|
|
int getNumberOfActiveHorizontalAidingSources() const;
|
|
|
|
// return true if the EKF is dead reckoning the position using inertial data only
|
|
bool inertial_dead_reckoning() {return _is_dead_reckoning;}
|
|
|
|
virtual bool isTerrainEstimateValid() const = 0;
|
|
//[[deprecated("Replaced by isTerrainEstimateValid")]]
|
|
bool get_terrain_valid() { return isTerrainEstimateValid(); }
|
|
|
|
// get the estimated terrain vertical position relative to the NED origin
|
|
virtual float getTerrainVertPos() const = 0;
|
|
|
|
// return true if the local position estimate is valid
|
|
bool local_position_is_valid();
|
|
|
|
const matrix::Quatf getQuaternion() const { return _output_new.quat_nominal; }
|
|
|
|
// return the quaternion defining the rotation from the EKF to the External Vision reference frame
|
|
virtual matrix::Quatf getVisionAlignmentQuaternion() const = 0;
|
|
|
|
// get the velocity of the body frame origin in local NED earth frame
|
|
Vector3f getVelocity() const
|
|
{
|
|
const Vector3f vel_earth = _output_new.vel - _vel_imu_rel_body_ned;
|
|
return vel_earth;
|
|
}
|
|
|
|
virtual Vector3f getVelocityVariance() const = 0;
|
|
|
|
// get the velocity derivative in earth frame
|
|
Vector3f getVelocityDerivative() const
|
|
{
|
|
return _vel_deriv;
|
|
}
|
|
|
|
// get the derivative of the vertical position of the body frame origin in local NED earth frame
|
|
float getVerticalPositionDerivative() const
|
|
{
|
|
return _output_vert_new.vert_vel - _vel_imu_rel_body_ned(2);
|
|
}
|
|
|
|
// get the position of the body frame origin in local earth frame
|
|
Vector3f getPosition() const
|
|
{
|
|
// rotate the position of the IMU relative to the boy origin into earth frame
|
|
const Vector3f pos_offset_earth = _R_to_earth_now * _params.imu_pos_body;
|
|
// subtract from the EKF position (which is at the IMU) to get position at the body origin
|
|
return _output_new.pos - pos_offset_earth;
|
|
}
|
|
|
|
virtual Vector3f getPositionVariance() const = 0;
|
|
|
|
// Get the value of magnetic declination in degrees to be saved for use at the next startup
|
|
// Returns true when the declination can be saved
|
|
// At the next startup, set param.mag_declination_deg to the value saved
|
|
bool get_mag_decl_deg(float *val)
|
|
{
|
|
*val = 0.0f;
|
|
if (_NED_origin_initialised && (_params.mag_declination_source & MASK_SAVE_GEO_DECL)) {
|
|
*val = math::degrees(_mag_declination_gps);
|
|
return true;
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
virtual Vector3f getAccelBias() const = 0;
|
|
virtual Vector3f getGyroBias() const = 0;
|
|
|
|
// get EKF mode status
|
|
void get_control_mode(uint32_t *val)
|
|
{
|
|
*val = _control_status.value;
|
|
}
|
|
|
|
// get EKF internal fault status
|
|
void get_filter_fault_status(uint16_t *val)
|
|
{
|
|
*val = _fault_status.value;
|
|
}
|
|
|
|
bool isVehicleAtRest() const { return _control_status.flags.vehicle_at_rest; }
|
|
|
|
// get GPS check status
|
|
virtual void get_gps_check_status(uint16_t *val) = 0;
|
|
|
|
// return the amount the local vertical position changed in the last reset and the number of reset events
|
|
virtual void get_posD_reset(float *delta, uint8_t *counter) = 0;
|
|
|
|
// return the amount the local vertical velocity changed in the last reset and the number of reset events
|
|
virtual void get_velD_reset(float *delta, uint8_t *counter) = 0;
|
|
|
|
// return the amount the local horizontal position changed in the last reset and the number of reset events
|
|
virtual void get_posNE_reset(float delta[2], uint8_t *counter) = 0;
|
|
|
|
// return the amount the local horizontal velocity changed in the last reset and the number of reset events
|
|
virtual void get_velNE_reset(float delta[2], uint8_t *counter) = 0;
|
|
|
|
// return the amount the quaternion has changed in the last reset and the number of reset events
|
|
virtual void get_quat_reset(float delta_quat[4], uint8_t *counter) = 0;
|
|
|
|
// get EKF innovation consistency check status information comprising of:
|
|
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
|
|
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
|
|
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
|
|
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned.
|
|
virtual void get_innovation_test_status(uint16_t &status, float &mag, float &vel, float &pos, float &hgt, float &tas, float &hagl, float &beta) = 0;
|
|
|
|
// return a bitmask integer that describes which state estimates can be used for flight control
|
|
virtual void get_ekf_soln_status(uint16_t *status) = 0;
|
|
|
|
// Getter for the average imu update period in s
|
|
float get_dt_imu_avg() const { return _dt_imu_avg; }
|
|
|
|
// Getter for the imu sample on the delayed time horizon
|
|
imuSample get_imu_sample_delayed()
|
|
{
|
|
return _imu_sample_delayed;
|
|
}
|
|
|
|
// Getter for the baro sample on the delayed time horizon
|
|
baroSample get_baro_sample_delayed()
|
|
{
|
|
return _baro_sample_delayed;
|
|
}
|
|
|
|
void print_status();
|
|
|
|
static constexpr unsigned FILTER_UPDATE_PERIOD_MS{10}; // ekf prediction period in milliseconds - this should ideally be an integer multiple of the IMU time delta
|
|
static constexpr float FILTER_UPDATE_PERIOD_S{FILTER_UPDATE_PERIOD_MS * 0.001f};
|
|
|
|
// request the EKF reset the yaw to the estimate from the internal EKF-GSF filter
|
|
// argment should be incremented only when a new reset is required
|
|
virtual void requestEmergencyNavReset() = 0;
|
|
|
|
// get ekf-gsf debug data
|
|
virtual bool getDataEKFGSF(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF]) = 0;
|
|
|
|
protected:
|
|
|
|
parameters _params; // filter parameters
|
|
|
|
ImuDownSampler _imu_down_sampler;
|
|
|
|
/*
|
|
OBS_BUFFER_LENGTH defines how many observations (non-IMU measurements) we can buffer
|
|
which sets the maximum frequency at which we can process non-IMU measurements. Measurements that
|
|
arrive too soon after the previous measurement will not be processed.
|
|
max freq (Hz) = (OBS_BUFFER_LENGTH - 1) / (IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_S)
|
|
This can be adjusted to match the max sensor data rate plus some margin for jitter.
|
|
*/
|
|
uint8_t _obs_buffer_length{0};
|
|
|
|
/*
|
|
IMU_BUFFER_LENGTH defines how many IMU samples we buffer which sets the time delay from current time to the
|
|
EKF fusion time horizon and therefore the maximum sensor time offset relative to the IMU that we can compensate for.
|
|
max sensor time offet (msec) = IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_MS
|
|
This can be adjusted to a value that is FILTER_UPDATE_PERIOD_MS longer than the maximum observation time delay.
|
|
*/
|
|
uint8_t _imu_buffer_length{0};
|
|
|
|
unsigned _min_obs_interval_us{0}; // minimum time interval between observations that will guarantee data is not lost (usec)
|
|
|
|
float _dt_imu_avg{0.0f}; // average imu update period in s
|
|
|
|
imuSample _imu_sample_delayed{}; // captures the imu sample on the delayed time horizon
|
|
|
|
// measurement samples capturing measurements on the delayed time horizon
|
|
magSample _mag_sample_delayed{};
|
|
baroSample _baro_sample_delayed{};
|
|
gpsSample _gps_sample_delayed{};
|
|
sensor::SensorRangeFinder _range_sensor{};
|
|
airspeedSample _airspeed_sample_delayed{};
|
|
flowSample _flow_sample_delayed{};
|
|
extVisionSample _ev_sample_delayed{};
|
|
dragSample _drag_sample_delayed{};
|
|
dragSample _drag_down_sampled{}; // down sampled drag specific force data (filter prediction rate -> observation rate)
|
|
auxVelSample _auxvel_sample_delayed{};
|
|
|
|
// Used by the multi-rotor specific drag force fusion
|
|
uint8_t _drag_sample_count{0}; // number of drag specific force samples assumulated at the filter prediction rate
|
|
float _drag_sample_time_dt{0.0f}; // time integral across all samples used to form _drag_down_sampled (sec)
|
|
float _air_density{CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C}; // air density (kg/m**3)
|
|
|
|
// Sensor limitations
|
|
float _flow_max_rate{0.0f}; ///< maximum angular flow rate that the optical flow sensor can measure (rad/s)
|
|
float _flow_min_distance{0.0f}; ///< minimum distance that the optical flow sensor can operate at (m)
|
|
float _flow_max_distance{0.0f}; ///< maximum distance that the optical flow sensor can operate at (m)
|
|
|
|
// Output Predictor
|
|
outputSample _output_sample_delayed{}; // filter output on the delayed time horizon
|
|
outputSample _output_new{}; // filter output on the non-delayed time horizon
|
|
outputVert _output_vert_delayed{}; // vertical filter output on the delayed time horizon
|
|
outputVert _output_vert_new{}; // vertical filter output on the non-delayed time horizon
|
|
imuSample _newest_high_rate_imu_sample{}; // imu sample capturing the newest imu data
|
|
Matrix3f _R_to_earth_now; // rotation matrix from body to earth frame at current time
|
|
Vector3f _vel_imu_rel_body_ned; // velocity of IMU relative to body origin in NED earth frame
|
|
Vector3f _vel_deriv; // velocity derivative at the IMU in NED earth frame (m/s/s)
|
|
|
|
bool _imu_updated{false}; // true if the ekf should update (completed downsampling process)
|
|
bool _initialised{false}; // true if the ekf interface instance (data buffering) is initialized
|
|
|
|
bool _NED_origin_initialised{false};
|
|
bool _gps_speed_valid{false};
|
|
float _gps_origin_eph{0.0f}; // horizontal position uncertainty of the GPS origin
|
|
float _gps_origin_epv{0.0f}; // vertical position uncertainty of the GPS origin
|
|
struct map_projection_reference_s _pos_ref {}; // Contains WGS-84 position latitude and longitude (radians) of the EKF origin
|
|
struct map_projection_reference_s _gps_pos_prev {}; // Contains WGS-84 position latitude and longitude (radians) of the previous GPS message
|
|
float _gps_alt_prev{0.0f}; // height from the previous GPS message (m)
|
|
float _gps_yaw_offset{0.0f}; // Yaw offset angle for dual GPS antennas used for yaw estimation (radians).
|
|
|
|
// innovation consistency check monitoring ratios
|
|
float _yaw_test_ratio{}; // yaw innovation consistency check ratio
|
|
float _mag_test_ratio[3] {}; // magnetometer XYZ innovation consistency check ratios
|
|
Vector2f _gps_vel_test_ratio; // GPS velocity innovation consistency check ratios
|
|
Vector2f _gps_pos_test_ratio; // GPS position innovation consistency check ratios
|
|
Vector2f _ev_vel_test_ratio; // EV velocity innovation consistency check ratios
|
|
Vector2f _ev_pos_test_ratio ; // EV position innovation consistency check ratios
|
|
Vector2f _aux_vel_test_ratio; // Auxiliray horizontal velocity innovation consistency check ratio
|
|
Vector2f _baro_hgt_test_ratio; // baro height innovation consistency check ratios
|
|
Vector2f _rng_hgt_test_ratio; // range finder height innovation consistency check ratios
|
|
float _optflow_test_ratio{}; // Optical flow innovation consistency check ratio
|
|
float _tas_test_ratio{}; // tas innovation consistency check ratio
|
|
float _hagl_test_ratio{}; // height above terrain measurement innovation consistency check ratio
|
|
float _beta_test_ratio{}; // sideslip innovation consistency check ratio
|
|
float _drag_test_ratio[2] {}; // drag innovation consistency check ratio
|
|
innovation_fault_status_u _innov_check_fail_status{};
|
|
|
|
bool _is_dead_reckoning{false}; // true if we are no longer fusing measurements that constrain horizontal velocity drift
|
|
bool _deadreckon_time_exceeded{true}; // true if the horizontal nav solution has been deadreckoning for too long and is invalid
|
|
bool _is_wind_dead_reckoning{false}; // true if we are navigationg reliant on wind relative measurements
|
|
|
|
// IMU vibration and movement monitoring
|
|
Vector3f _delta_ang_prev; // delta angle from the previous IMU measurement
|
|
Vector3f _delta_vel_prev; // delta velocity from the previous IMU measurement
|
|
Vector3f _vibe_metrics; // IMU vibration metrics
|
|
// [0] Level of coning vibration in the IMU delta angles (rad^2)
|
|
// [1] high frequency vibration level in the IMU delta angle data (rad)
|
|
// [2] high frequency vibration level in the IMU delta velocity data (m/s)
|
|
float _gps_drift_metrics[3] {}; // Array containing GPS drift metrics
|
|
// [0] Horizontal position drift rate (m/s)
|
|
// [1] Vertical position drift rate (m/s)
|
|
// [2] Filtered horizontal velocity (m/s)
|
|
uint64_t _time_last_move_detect_us{0}; // timestamp of last movement detection event in microseconds
|
|
bool _gps_drift_updated{false}; // true when _gps_drift_metrics has been updated and is ready for retrieval
|
|
|
|
// data buffer instances
|
|
RingBuffer<imuSample> _imu_buffer;
|
|
RingBuffer<gpsSample> _gps_buffer;
|
|
RingBuffer<magSample> _mag_buffer;
|
|
RingBuffer<baroSample> _baro_buffer;
|
|
RingBuffer<rangeSample> _range_buffer;
|
|
RingBuffer<airspeedSample> _airspeed_buffer;
|
|
RingBuffer<flowSample> _flow_buffer;
|
|
RingBuffer<extVisionSample> _ext_vision_buffer;
|
|
RingBuffer<outputSample> _output_buffer;
|
|
RingBuffer<outputVert> _output_vert_buffer;
|
|
RingBuffer<dragSample> _drag_buffer;
|
|
RingBuffer<auxVelSample> _auxvel_buffer;
|
|
|
|
// yaw estimator instance
|
|
EKFGSF_yaw yawEstimator;
|
|
|
|
// observation buffer final allocation failed
|
|
bool _gps_buffer_fail{false};
|
|
bool _mag_buffer_fail{false};
|
|
bool _baro_buffer_fail{false};
|
|
bool _range_buffer_fail{false};
|
|
bool _airspeed_buffer_fail{false};
|
|
bool _flow_buffer_fail{false};
|
|
bool _ev_buffer_fail{false};
|
|
bool _drag_buffer_fail{false};
|
|
bool _auxvel_buffer_fail{false};
|
|
|
|
// timestamps of latest in buffer saved measurement in microseconds
|
|
uint64_t _time_last_imu{0};
|
|
uint64_t _time_last_gps{0};
|
|
uint64_t _time_last_mag{0};
|
|
uint64_t _time_last_baro{0};
|
|
uint64_t _time_last_range{0};
|
|
uint64_t _time_last_airspeed{0};
|
|
uint64_t _time_last_ext_vision{0};
|
|
uint64_t _time_last_optflow{0};
|
|
uint64_t _time_last_auxvel{0};
|
|
//last time the baro ground effect compensation was turned on externally (uSec)
|
|
uint64_t _time_last_gnd_effect_on{0};
|
|
|
|
// Used to downsample magnetometer data
|
|
Vector3f _mag_data_sum;
|
|
uint8_t _mag_sample_count {0};
|
|
uint64_t _mag_timestamp_sum {0};
|
|
|
|
// Used to down sample barometer data
|
|
float _baro_alt_sum {0.0f}; // summed pressure altitude readings (m)
|
|
uint8_t _baro_sample_count {0}; // number of barometric altitude measurements summed
|
|
uint64_t _baro_timestamp_sum {0}; // summed timestamp to provide the timestamp of the averaged sample
|
|
|
|
fault_status_u _fault_status{};
|
|
|
|
// allocate data buffers and initialize interface variables
|
|
bool initialise_interface(uint64_t timestamp);
|
|
|
|
// free buffer memory
|
|
void unallocate_buffers();
|
|
|
|
float _mag_declination_gps{0.0f}; // magnetic declination returned by the geo library using the last valid GPS position (rad)
|
|
float _mag_inclination_gps{0.0f}; // magnetic inclination returned by the geo library using the last valid GPS position (rad)
|
|
float _mag_strength_gps{0.0f}; // magnetic strength returned by the geo library using the last valid GPS position (T)
|
|
|
|
// this is the current status of the filter control modes
|
|
filter_control_status_u _control_status{};
|
|
|
|
// this is the previous status of the filter control modes - used to detect mode transitions
|
|
filter_control_status_u _control_status_prev{};
|
|
|
|
// calculate the inverse rotation matrix from a quaternion rotation
|
|
Matrix3f quat_to_invrotmat(const Quatf &quat);
|
|
|
|
inline void setDragData();
|
|
|
|
inline void computeVibrationMetric();
|
|
inline bool checkIfVehicleAtRest(float dt);
|
|
|
|
virtual float compensateBaroForDynamicPressure(const float baro_alt_uncompensated) = 0;
|
|
|
|
void printBufferAllocationFailed(const char * buffer_name);
|
|
};
|