px4-firmware/EKF/gps_checks.cpp

248 lines
10 KiB
C++

/****************************************************************************
*
* Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file gps_checks.cpp
* Perform pre-flight and in-flight GPS quality checks
*
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "../ecl.h"
#include "ekf.h"
#include "mathlib.h"
#include "geo.h"
// GPS pre-flight check bit locations
#define MASK_GPS_NSATS (1<<0)
#define MASK_GPS_GDOP (1<<1)
#define MASK_GPS_HACC (1<<2)
#define MASK_GPS_VACC (1<<3)
#define MASK_GPS_SACC (1<<4)
#define MASK_GPS_HDRIFT (1<<5)
#define MASK_GPS_VDRIFT (1<<6)
#define MASK_GPS_HSPD (1<<7)
#define MASK_GPS_VSPD (1<<8)
bool Ekf::collect_gps(uint64_t time_usec, struct gps_message *gps)
{
// If we have defined the WGS-84 position of the NED origin, run gps quality checks until they pass, then define the origins WGS-84 position using the last GPS fix
if (!_NED_origin_initialised) {
// we have good GPS data so can now set the origin's WGS-84 position
if (gps_is_good(gps) && !_NED_origin_initialised) {
ECL_INFO("EKF gps is good - setting origin");
// Set the origin's WGS-84 position to the last gps fix
double lat = gps->lat / 1.0e7;
double lon = gps->lon / 1.0e7;
map_projection_init_timestamped(&_pos_ref, lat, lon, _time_last_imu);
// if we are already doing aiding, corect for the change in posiiton since the EKF started navigating
if (_control_status.flags.opt_flow || _control_status.flags.gps) {
double est_lat, est_lon;
map_projection_reproject(&_pos_ref, -_state.pos(0), -_state.pos(1), &est_lat, &est_lon);
map_projection_init_timestamped(&_pos_ref, est_lat, est_lon, _time_last_imu);
}
// Take the current GPS height and subtract the filter height above origin to estimate the GPS height of the origin
_gps_alt_ref = 1e-3f * (float)gps->alt + _state.pos(2);
_NED_origin_initialised = true;
_last_gps_origin_time_us = _time_last_imu;
// set the magnetic declination returned by the geo library using the current GPS position
_mag_declination_gps = math::radians(get_mag_declination(lat, lon));
// save the horizontal and vertical position uncertainty of the origin
_gps_origin_eph = gps->eph;
_gps_origin_epv = gps->epv;
// if the user has selected GPS as the primary height source, switch across to using it
if (_primary_hgt_source == VDIST_SENSOR_GPS) {
ECL_INFO("EKF switching to GPS height");
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = true;
_control_status.flags.rng_hgt = false;
// zero the sensor offset
_hgt_sensor_offset = 0.0f;
}
}
}
// start collecting GPS if there is a 3D fix and the NED origin has been set
if (_NED_origin_initialised && gps->fix_type >= 3) {
return true;
} else {
return false;
}
return false;
}
/*
* Return true if the GPS solution quality is adequate to set an origin for the EKF
* and start GPS aiding.
* All activated checks must pass for 10 seconds.
* Checks are activated using the EKF2_GPS_CHECK bitmask parameter
* Checks are adjusted using the EKF2_REQ_* parameters
*/
bool Ekf::gps_is_good(struct gps_message *gps)
{
// Check the fix type
_gps_check_fail_status.flags.fix = (gps->fix_type < 3);
// Check the number of satellites
_gps_check_fail_status.flags.nsats = (gps->nsats < _params.req_nsats);
// Check the geometric dilution of precision
_gps_check_fail_status.flags.gdop = (gps->gdop > _params.req_gdop);
// Check the reported horizontal position accuracy
_gps_check_fail_status.flags.hacc = (gps->eph > _params.req_hacc);
// Check the reported vertical position accuracy
_gps_check_fail_status.flags.vacc = (gps->epv > _params.req_vacc);
// Check the reported speed accuracy
_gps_check_fail_status.flags.sacc = (gps->sacc > _params.req_sacc);
// Calculate position movement since last measurement
float delta_posN = 0.0f;
float delta_PosE = 0.0f;
double lat = gps->lat * 1.0e-7;
double lon = gps->lon * 1.0e-7;
if (_pos_ref.init_done) {
map_projection_project(&_pos_ref, lat, lon, &delta_posN, &delta_PosE);
} else {
map_projection_init_timestamped(&_pos_ref, lat, lon, _time_last_imu);
_gps_alt_ref = 1e-3f * (float)gps->alt;
}
// Calculate time lapsed since last update, limit to prevent numerical errors and calculate the lowpass filter coefficient
const float filt_time_const = 10.0f;
float dt = fminf(fmaxf(float(_time_last_imu - _last_gps_origin_time_us) * 1e-6f, 0.001f), filt_time_const);
float filter_coef = dt / filt_time_const;
// Calculate the horizontal drift velocity components and limit to 10x the threshold
float vel_limit = 10.0f * _params.req_hdrift;
float velN = fminf(fmaxf(delta_posN / dt, -vel_limit), vel_limit);
float velE = fminf(fmaxf(delta_PosE / dt, -vel_limit), vel_limit);
// Apply a low pass filter
_gpsDriftVelN = velN * filter_coef + _gpsDriftVelN * (1.0f - filter_coef);
_gpsDriftVelE = velE * filter_coef + _gpsDriftVelE * (1.0f - filter_coef);
// Calculate the horizontal drift speed and fail if too high
// This check can only be used if the vehicle is stationary during alignment
if (!_control_status.flags.in_air) {
float drift_speed = sqrtf(_gpsDriftVelN * _gpsDriftVelN + _gpsDriftVelE * _gpsDriftVelE);
_gps_check_fail_status.flags.hdrift = (drift_speed > _params.req_hdrift);
} else {
_gps_check_fail_status.flags.hdrift = false;
}
// Save current position as the reference for next time
map_projection_init_timestamped(&_pos_ref, lat, lon, _time_last_imu);
_last_gps_origin_time_us = _time_last_imu;
// Calculate the vertical drift velocity and limit to 10x the threshold
vel_limit = 10.0f * _params.req_vdrift;
float velD = fminf(fmaxf((_gps_alt_ref - 1e-3f * (float)gps->alt) / dt, -vel_limit), vel_limit);
// Save the current height as the reference for next time
_gps_alt_ref = 1e-3f * (float)gps->alt;
// Apply a low pass filter to the vertical velocity
_gps_drift_velD = velD * filter_coef + _gps_drift_velD * (1.0f - filter_coef);
// Fail if the vertical drift speed is too high
// This check can only be used if the vehicle is stationary during alignment
if (!_control_status.flags.in_air) {
_gps_check_fail_status.flags.vdrift = (fabsf(_gps_drift_velD) > _params.req_vdrift);
} else {
_gps_check_fail_status.flags.vdrift = false;
}
// Check the magnitude of the filtered horizontal GPS velocity
// This check can only be used if the vehicle is stationary during alignment
if (!_control_status.flags.in_air) {
vel_limit = 10.0f * _params.req_hdrift;
float gps_velN = fminf(fmaxf(gps->vel_ned[0], -vel_limit), vel_limit);
float gps_velE = fminf(fmaxf(gps->vel_ned[1], -vel_limit), vel_limit);
_gps_velN_filt = gps_velN * filter_coef + _gps_velN_filt * (1.0f - filter_coef);
_gps_velE_filt = gps_velE * filter_coef + _gps_velE_filt * (1.0f - filter_coef);
float horiz_speed = sqrtf(_gps_velN_filt * _gps_velN_filt + _gps_velE_filt * _gps_velE_filt);
_gps_check_fail_status.flags.hspeed = (horiz_speed > _params.req_hdrift);
} else {
_gps_check_fail_status.flags.hspeed = false;
}
// Check the filtered difference between GPS and EKF vertical velocity
vel_limit = 10.0f * _params.req_vdrift;
float vertVel = fminf(fmaxf((gps->vel_ned[2] - _state.vel(2)), -vel_limit), vel_limit);
_gps_velD_diff_filt = vertVel * filter_coef + _gps_velD_diff_filt * (1.0f - filter_coef);
_gps_check_fail_status.flags.vspeed = (fabsf(_gps_velD_diff_filt) > _params.req_vdrift);
// assume failed first time through
if (_last_gps_fail_us == 0) {
_last_gps_fail_us = _time_last_imu;
}
// if any user selected checks have failed, record the fail time
if (
_gps_check_fail_status.flags.fix ||
(_gps_check_fail_status.flags.nsats && (_params.gps_check_mask & MASK_GPS_NSATS)) ||
(_gps_check_fail_status.flags.gdop && (_params.gps_check_mask & MASK_GPS_GDOP)) ||
(_gps_check_fail_status.flags.hacc && (_params.gps_check_mask & MASK_GPS_HACC)) ||
(_gps_check_fail_status.flags.vacc && (_params.gps_check_mask & MASK_GPS_VACC)) ||
(_gps_check_fail_status.flags.sacc && (_params.gps_check_mask & MASK_GPS_SACC)) ||
(_gps_check_fail_status.flags.hdrift && (_params.gps_check_mask & MASK_GPS_HDRIFT)) ||
(_gps_check_fail_status.flags.vdrift && (_params.gps_check_mask & MASK_GPS_VDRIFT)) ||
(_gps_check_fail_status.flags.hspeed && (_params.gps_check_mask & MASK_GPS_HSPD)) ||
(_gps_check_fail_status.flags.vspeed && (_params.gps_check_mask & MASK_GPS_VSPD))
) {
_last_gps_fail_us = _time_last_imu;
}
// continuous period without fail of 10 seconds required to return a healthy status
if (_time_last_imu - _last_gps_fail_us > 1e7) {
return true;
}
return false;
}