forked from Archive/PX4-Autopilot
7a586daed8
git-svn-id: https://nuttx.svn.sourceforge.net/svnroot/nuttx/trunk@4361 7fd9a85b-ad96-42d3-883c-3090e2eb8679 |
||
---|---|---|
.. | ||
include | ||
nsh | ||
ostest | ||
src | ||
tools | ||
README.txt |
README.txt
configs/pic32mx README ===================== This README file discusses the port of NuttX to the "Advanced USB Storage Demo Board," Model DB-DP11215, from Sure Electronics (http://www.sureelectronics.net/). This board features the MicroChip PIC32MX440F512H. See also http://www.sureelectronics.net/goods.php?id=1168 for further information about the Sure DB-DP11215 board. DB_DP11215 PIC32 Storage Demo Board - PIC32MX44F512H - SD card slot - RS-2323 Interface - USB (MINI-B) - 2x16 LCD display - Three tactile switches - Four user LEDs Also available (but not yet supported). DB-DP11212 PIC32 General Purpose Demo Board - PIC32MX44F512H - LM75A temperature sensor and temperature resistor (NTC-SMD thermistor) - SPI FLASH: AT25DF041A - USB (MINI-B) - 2x16 LCD display - 4 digit, 8 segment LED display - Three tactile switches - Four user LEDs Contents ======== PIC32MX440F512H Pin Out Toolchains Loading NuttX with PICkit2 PIC32MX Configuration Options Configurations PIC32MX440F512H Pin Out ======================= PIC32MX440F512H 64-Pin QFN (USB) Pin Out. LEFT SIDE, TOP-TO-BOTTOM (if pin 1 is in upper left) PIN NAME SIGNAL NOTES ---- ----------------------------- -------------- ------------------------------- 1 PMD5/RE5 PMPD5 Display, JP1-12, DB4 2 PMD6/RE6 PMPD6 Display, JP1-13, DB6 3 PMD7/RE7 PMPD7 Display, JP1-14, DB7 4 SCK2/PMA5/CN8/RG6 SCK SD connector SCK, FLASH (U1) SCK* 5 SDI2/PMA4/CN9/RG7 SDI SD connector DO, FLASH (U1) SO* 6 SDO2/PMA3/CN10/RG8 SDO SD connector DI, FLASH (U1) SI* 7 MCLR\ PIC_MCLR Pulled high, J7-1, ICSP 8 SS2/PMA2/CN11/RG9 UTIL_CS FLASH (U1) CS* 9 Vss Grounded 10 Vdd +3.3V --- 11 AN5/C1IN+/Vbuson/CN7/RB5 Vbuson/AN5/RB5 To USB VBUS circuitry 12 AN4/C1IN-/CN6/RB4 SW_OK SW3, Pull high, low means SW3 closed 13 AN3/C2IN+/CN5/RB3 SW_UP SW1, Pull high, low means SW1 closed 14 AN2/C2IN-/CN4/RB2 SW_Down SW2, Pull high, low means SW2 closed 15 PGEC1/AN1/Vref-/CVref-/CN3/ ADC_SENSE_SWITCHED_+VBUS To USB VBUS circuitry RB1 16 PGED1/AN0/VREF+/CVREF+/PMA6/ N/C Not connected CN2/RB0 *FLASH (U1, SOIOC) not populated BOTTOM SIDE, LEFT-TO-RIGHT (if pin 1 is in upper left) PIN NAME SIGNAL NOTES ---- ----------------------------- -------------- ------------------------------- 17 PGEC2/AN6/OCFA/RB6 PIC_PGC2 J7-5, ICSP 18 PGED2/AN7/RB7 PIC_PGD2 J7-4, ICSP 19 AVdd +3.3V --- 20 AVss Grounded 21 AN8/U2CTS/C1OUT/RB8 N/C Not connected 22 AN9/C2OUT/PMA7/RB9 N/C Not connected 23 TMS/AN10/CVREFOUT/PMA13/RB10 UTIL_WP FLASH (U1) WP* 24 TDO/AN11/PMA12//RB11 SD_CS SD connector CS 25 Vss Grounded 26 Vdd +3.3V --- 27 TCK/AN12/PMA11/RB12 SD_CD SD connector CD 28 TDI/AN13/PMA10/RB13 SD_WD SD connector WD 29 AN14/U2RTS/PMALH/PMA1/RB14 N/C Not connected 30 AN15/OCFB/PMALL/PMA0/CN12/ PMPA0 Display, JP1-4, RS RB15 31 SDA2/U2RX/PMA9/CN17/RF4 RXD2_MCU J5 DB9 via RS232 driver 32 SCL2/U2TX/PMA8/CN18/RF5 TXD2_MCU J5 DB9 via RS232 driver *FLASH (U1, SOIOC) not populated RIGHT SIDE, TOP-TO-BOTTOM (if pin 1 is in upper left) PIN NAME SIGNAL NOTES ---- ----------------------------- -------------- ------------------------------- 48 SOSCO/T1CK/CN0/RC14 SOSCO 32.768KHz XTAL (Y1) 47 SOSCI/CN1/RC13 SOSCI 32.768KHz XTAL (Y1) 46 OC1/INT0/RD0 PWM1 Used to control backlight level (K) 45 IC4/PMCS1/PMA14/INT4/RD11 PMPCS1 Display, JP1-6, E 44 SCL1/IC3/PMCS2/PMA15/INT3/ USB_OPT USB PHY RD10 43 U1CTS/SDA1/IC2/INT2/RD9 USB_OPTEN USB PHY 42 RTCC/IC1/INT1/RD8 N/C Not connected 41 Vss Grounded 40 OSC2/CLKO/RC15 OSC2 20MHz XTAL (Y2) 39 OSC1/CLKI/RC12 OSC1 20MHz XTAL (Y2) 38 Vdd +3.3V --- 37 D+/RG2 APPS_D+ USB connectors via PHY 36 D-/RG3 APPS_D- USB connectors via PHY 35 Vusb +3.3V --- 34 Vbus VBUS_DEVICE_MODE Display, USB Mini-B, USB Type A, JP1-1, +5V 33 USBID/RF3 N/C Not connected TOP SIDE, LEFT-TO-RIGHT (if pin 1 is in upper left) PIN NAME SIGNAL NOTES ---- ----------------------------- -------------- ------------------------------- 64 PMPD4/RE4 PMPD4 Display, JP1-11, DB4 63 PMPD3/RE3 PMPD3 Display, JP1-10, DB3 62 PMPD2/RE2 PMPD2 Display, JP1-9, DB2 61 PMPD1/RE1 PMPD1 Display, JP1-8, DB1 60 PMPD0/RE0 PMPD0 Display, JP1-7, DB0 59 RF1 RF1 Low illuminates LED/R/ERR 58 RF0 RF0 Low illuminates LED/Y/flash 57 ENVREG ENVREG Pulled high 56 Vcap/Vddcore VDDCORE Capactors to ground 55 CN16/RD7 RD7 Low illuminates LED/Y/USB 54 CN15/RD6 RD6 Low illuminates LED/Y/SD 53 PMRD/CN14/RD5 PMPRD Display, JP1-5, R/W 52 OC5/IC5/PMWR/CN13/RD4 N/C Not connected 51 U1TX/OC4/RD3 CP2102_RXD J6-3, UART1 (also CP2102*) 50 U1RX/OC3/RD2 CP2102_TXD J6-2, UART1 (also CP2102*) 49 U1RTS/OC2/RD1 PWM2 Used to control backlight level (Vo) *USB-to-UART bridge (U1, CP2102) not populated Toolchains ========== I am using the free, LITE version of the PIC32MX toolchain available for download from the microchip.com web site. I am using the Windows version. The MicroChip toolchain is the only toolchaing currently supported in these configurations, but it should be a simple matter to adapt to other toolchains by modifying the Make.defs file include in each configuration. Toolchain Options: CONFIG_PIC32MX_MICROCHIPW - MicroChip full toolchain for Windows CONFIG_PIC32MX_MICROCHIPL - MicroChip full toolchain for Linux CONFIG_PIC32MX_MICROCHIPW_LITE - MicroChip LITE toolchain for Windows CONFIG_PIC32MX_MICROCHIPL_LITE - MicroChip LITE toolchain for Linux Windows Native Toolchains NOTE: There are several limitations to using a Windows based toolchain in a Cygwin environment. The three biggest are: 1. The Windows toolchain cannot follow Cygwin paths. Path conversions are performed automatically in the Cygwin makefiles using the 'cygpath' utility but you might easily find some new path problems. If so, check out 'cygpath -w' 2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links are used in Nuttx (e.g., include/arch). The make system works around these problems for the Windows tools by copying directories instead of linking them. But this can also cause some confusion for you: For example, you may edit a file in a "linked" directory and find that your changes had no effect. That is because you are building the copy of the file in the "fake" symbolic directory. If you use a Windows toolchain, you should get in the habit of making like this: make clean_context all An alias in your .bashrc file might make that less painful. 3. Dependencies are not made when using Windows versions of the GCC. This is because the dependencies are generated using Windows pathes which do not work with the Cygwin make. Support has been added for making dependencies with the windows-native toolchains. That support can be enabled by modifying your Make.defs file as follows: - MKDEP = $(TOPDIR)/tools/mknulldeps.sh + MKDEP = $(TOPDIR)/tools/mkdeps.sh --winpaths "$(TOPDIR)" If you have problems with the dependency build (for example, if you are not building on C:), then you may need to modify tools/mkdeps.sh Loading NuttX with PICkit2 ========================== NOTE: You need a PICKit3 if you plan to use the MPLAB debugger! The PICKit2 can, however, still be used to load programs. Instructions for the PICKit3 are similar. Intel Hex Forma Files: ---------------------- When NuttX is built it will produce two files in the top-level NuttX directory: 1) nuttx - This is an ELF file, and 2) nuttx.ihx - This is an Intel Hex format file. This is controlled by the setting CONFIG_INTELHEX_BINARY in the .config file. The PICkit tool wants an Intel Hex format file to burn into FLASH. However, there are two problems with the generated nutt.ihx: 1) The tool expects Intel Hex format files to be named *.hex. This is not a significant issue. However, just renaming the file to nuttx.hex is *not* sufficient. There is another problem: 2) The tool expects the nuttx.hex file to contain physical addresses. But the nuttx.ihx file generated from the top-level make will have address in the KSEG0 and KSEG1 regions. tools/mkpichex: --------------- There is a simple tool in the configs/sure-pic32mx/tools directory that can be used to solve both issues with the nuttx.ihx file. But, first, you must build the the tools: cd configs/sure-pic32mx/tools make Now you will have an excecutable file call mkpichex (or mkpichex.exe on Cygwin). This program will take the nutt.ihx file as an input, it will convert all of the KSEG0 and KSEG1 addresses to physical address, and it will write the modified file as nuttx.hex. To use this file, you need to do the following things: . ./setenv.sh # Source setenv.sh. Among other this, this script # will add configs/sure-pic32mx/tools to your # PATH variable make # Build nuttx and nuttx.ihx mkpichex $PWD # Convert nuttx.ihx to nuttx.hex. $PWD is the path # to the top-level build directory. It is the only # required input to mkpichex. PIC32MX Configuration Options ============================= General Architecture Settings: CONFIG_ARCH - Identifies the arch/ subdirectory. This should be set to: CONFIG_ARCH=mips CONFIG_ARCH_family - For use in C code: CONFIG_ARCH_MIPS=y CONFIG_ARCH_architecture - For use in C code: CONFIG_ARCH_MIPS32=y CONFIG_ARCH_CHIP - Identifies the arch/*/chip subdirectory CONFIG_ARCH_CHIP=pic32mx CONFIG_ARCH_CHIP_name - For use in C code to identify the exact chip: CONFIG_ARCH_CHIP_PIC32MX440F512H=y CONFIG_ARCH_BOARD - Identifies the configs subdirectory and hence, the board that supports the particular chip or SoC. CONFIG_ARCH_BOARD=sure-pic32mx CONFIG_ARCH_DBDP11215 Distinguishes the DB_DP11215 PIC32 Storage Demo Board CONFIG_ARCH_DBDP11212 Distingustes the DB-DP11212 PIC32 General Purpose Demo Board CONFIG_ARCH_BOARD_name - For use in C code CONFIG_ARCH_BOARD_SUREPIC32MX=y CONFIG_ARCH_LOOPSPERMSEC - Must be calibrated for correct operation of delay loops CONFIG_ENDIAN_BIG - define if big endian (default is little endian) CONFIG_DRAM_SIZE - Describes the installed DRAM (CPU SRAM in this case): CONFIG_DRAM_SIZE=(32*1024) (32Kb) There is an additional 32Kb of SRAM in AHB SRAM banks 0 and 1. CONFIG_DRAM_START - The start address of installed DRAM CONFIG_DRAM_START=0x10000000 CONFIG_DRAM_END - Last address+1 of installed RAM CONFIG_DRAM_END=(CONFIG_DRAM_START+CONFIG_DRAM_SIZE) CONFIG_ARCH_IRQPRIO - The PIC32MXx supports interrupt prioritization CONFIG_ARCH_IRQPRIO=y CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to boards that have LEDs CONFIG_ARCH_INTERRUPTSTACK - This architecture supports an interrupt stack. If defined, this symbol is the size of the interrupt stack in bytes. If not defined, the user task stacks will be used during interrupt handling. CONFIG_ARCH_STACKDUMP - Do stack dumps after assertions CONFIG_ARCH_LEDS - Use LEDs to show state. Unique to board architecture. CONFIG_ARCH_CALIBRATION - Enables some build in instrumentation that cause a 100 second delay during boot-up. This 100 second delay serves no purpose other than it allows you to calibratre CONFIG_ARCH_LOOPSPERMSEC. You simply use a stop watch to measure the 100 second delay then adjust CONFIG_ARCH_LOOPSPERMSEC until the delay actually is 100 seconds. PIC32MX Configuration CONFIG_PIC32MX_MVEC - Select muli- vs. single-vectored interrupts Individual subsystems can be enabled: CONFIG_PIC32MX_WDT - Watchdog timer CONFIG_PIC32MX_T2 - Timer 2 (Timer 1 is the system time and always enabled) CONFIG_PIC32MX_T3 - Timer 3 CONFIG_PIC32MX_T4 - Timer 4 CONFIG_PIC32MX_T5 - Timer 5 CONFIG_PIC32MX_IC1 - Input Capture 1 CONFIG_PIC32MX_IC2 - Input Capture 2 CONFIG_PIC32MX_IC3 - Input Capture 3 CONFIG_PIC32MX_IC4 - Input Capture 4 CONFIG_PIC32MX_IC5 - Input Capture 5 CONFIG_PIC32MX_OC1 - Output Compare 1 CONFIG_PIC32MX_OC2 - Output Compare 2 CONFIG_PIC32MX_OC3 - Output Compare 3 CONFIG_PIC32MX_OC4 - Output Compare 4 CONFIG_PIC32MX_OC5 - Output Compare 5 CONFIG_PIC32MX_I2C1 - I2C 1 CONFIG_PIC32MX_I2C2 - I2C 2 CONFIG_PIC32MX_SPI2 - SPI 2 CONFIG_PIC32MX_UART1 - UART 1 CONFIG_PIC32MX_UART2 - UART 2 CONFIG_PIC32MX_ADC - ADC 1 CONFIG_PIC32MX_PMP - Parallel Master Port CONFIG_PIC32MX_CM1 - Comparator 1 CONFIG_PIC32MX_CM2 - Comparator 2 CONFIG_PIC32MX_RTCC - Real-Time Clock and Calendar CONFIG_PIC32MX_DMA - DMA CONFIG_PIC32MX_FLASH - FLASH CONFIG_PIC32MX_USBDEV - USB device CONFIG_PIC32MX_USBHOST - USB host PIC32MX Configuration Settings DEVCFG0: CONFIG_PIC32MX_DEBUGGER - Background Debugger Enable. Default 3 (disabled). The value 2 enables. CONFIG_PIC32MX_ICESEL - In-Circuit Emulator/Debugger Communication Channel Select Default 1 (PG2) CONFIG_PIC32MX_PROGFLASHWP - Program FLASH write protect. Default 0xff (disabled) CONFIG_PIC32MX_BOOTFLASHWP - Default 1 (disabled) CONFIG_PIC32MX_CODEWP - Default 1 (disabled) DEVCFG1: (All settings determined by selections in board.h) DEVCFG2: (All settings determined by selections in board.h) DEVCFG3: CONFIG_PIC32MX_USBIDO - USB USBID Selection. Default 1 if USB enabled (USBID pin is controlled by the USB module), but 0 (GPIO) otherwise. CONFIG_PIC32MX_VBUSIO - USB VBUSON Selection (Default 1 if USB enabled (VBUSON pin is controlled by the USB module, but 0 (GPIO) otherwise. CONFIG_PIC32MX_WDENABLE - Enabled watchdog on power up. Default 0 (watchdog can be enabled later by software). The priority of interrupts may be specified. The value ranage of priority is 4-31. The default (16) will be used if these any of these are undefined. CONFIG_PIC32MX_CTPRIO - Core Timer Interrupt CONFIG_PIC32MX_CS0PRIO - Core Software Interrupt 0 CONFIG_PIC32MX_CS1PRIO - Core Software Interrupt 1 CONFIG_PIC32MX_INT0PRIO - External Interrupt 0 CONFIG_PIC32MX_INT1PRIO - External Interrupt 1 CONFIG_PIC32MX_INT2PRIO - External Interrupt 2 CONFIG_PIC32MX_INT3PRIO - External Interrupt 3 CONFIG_PIC32MX_INT4PRIO - External Interrupt 4 CONFIG_PIC32MX_FSCMPRIO - Fail-Safe Clock Monitor CONFIG_PIC32MX_T1PRIO - Timer 1 (System timer) priority CONFIG_PIC32MX_T2PRIO - Timer 2 priority CONFIG_PIC32MX_T3PRIO - Timer 3 priority CONFIG_PIC32MX_T4PRIO - Timer 4 priority CONFIG_PIC32MX_T5PRIO - Timer 5 priority CONFIG_PIC32MX_IC1PRIO - Input Capture 1 CONFIG_PIC32MX_IC2PRIO - Input Capture 2 CONFIG_PIC32MX_IC3PRIO - Input Capture 3 CONFIG_PIC32MX_IC4PRIO - Input Capture 4 CONFIG_PIC32MX_IC5PRIO - Input Capture 5 CONFIG_PIC32MX_OC1PRIO - Output Compare 1 CONFIG_PIC32MX_OC2PRIO - Output Compare 2 CONFIG_PIC32MX_OC3PRIO - Output Compare 3 CONFIG_PIC32MX_OC4PRIO - Output Compare 4 CONFIG_PIC32MX_OC5PRIO - Output Compare 5 CONFIG_PIC32MX_I2C1PRIO - I2C 1 CONFIG_PIC32MX_I2C2PRIO - I2C 2 CONFIG_PIC32MX_SPI2PRIO - SPI 2 CONFIG_PIC32MX_UART1PRIO - UART 1 CONFIG_PIC32MX_UART2PRIO - UART 2 CONFIG_PIC32MX_CN - Input Change Interrupt CONFIG_PIC32MX_ADCPRIO - ADC1 Convert Done CONFIG_PIC32MX_PMPPRIO - Parallel Master Port CONFIG_PIC32MX_CM1PRIO - Comparator 1 CONFIG_PIC32MX_CM2PRIO - Comparator 2 CONFIG_PIC32MX_FSCMPRIO - Fail-Safe Clock Monitor CONFIG_PIC32MX_RTCCPRIO - Real-Time Clock and Calendar CONFIG_PIC32MX_DMA0PRIO - DMA Channel 0 CONFIG_PIC32MX_DMA1PRIO - DMA Channel 1 CONFIG_PIC32MX_DMA2PRIO - DMA Channel 2 CONFIG_PIC32MX_DMA3PRIO - DMA Channel 3 CONFIG_PIC32MX_FCEPRIO - Flash Control Event CONFIG_PIC32MX_USBPRIO - USB PIC32MXx specific device driver settings. NOTE: For the Sure board, UART2 is brought out to the DB9 connector and serves as the serial console. CONFIG_UARTn_SERIAL_CONSOLE - selects the UARTn for the console and ttys0 (default is the UART0). CONFIG_UARTn_RXBUFSIZE - Characters are buffered as received. This specific the size of the receive buffer CONFIG_UARTn_TXBUFSIZE - Characters are buffered before being sent. This specific the size of the transmit buffer CONFIG_UARTn_BAUD - The configure BAUD of the UART. Must be CONFIG_UARTn_BITS - The number of bits. Must be either 7 or 8. CONFIG_UARTn_PARTIY - 0=no parity, 1=odd parity, 2=even parity CONFIG_UARTn_2STOP - Two stop bits PIC32MXx USB Device Configuration PIC32MXx USB Host Configuration (the PIC32MX does not support USB Host) Configurations ============== Each PIC32MX configuration is maintained in a sudirectory and can be selected as follow: cd tools ./configure.sh sure-pic32mx/<subdir> cd - . ./setenv.sh Where <subdir> is one of the following: ostest: This configuration directory, performs a simple OS test using apps/examples/ostest. nsh: Configures the NuttShell (nsh) located at apps/examples/nsh. The Configuration enables only the serial NSH interface. The examples/usbterm program can be included as an NSH built-in function by defined the following in your .config file: CONFIG_USBEV=y : Enable basic USB device support CONFIG_PIC32MX_USBDEV=y : Enable PIC32 USB device support