Control Allocation Sequential Desaturation unit tests (#22612)

* [control_allocation] add unit tests for ControlAllocationSequentialDesaturation

* complete first 2 unit tests

* add yaw test

* add more unit tests

* improve comments

* format

* address review comments

* submodule update

* Update src/modules/control_allocator/ControlAllocation/ControlAllocationSequentialDesaturationTest.cpp

Co-authored-by: Silvan Fuhrer <silvan@auterion.com>

* Update src/modules/control_allocator/ControlAllocation/ControlAllocationSequentialDesaturationTest.cpp

Co-authored-by: Silvan Fuhrer <silvan@auterion.com>

* Update src/modules/control_allocator/ControlAllocation/ControlAllocationSequentialDesaturationTest.cpp

Co-authored-by: Silvan Fuhrer <silvan@auterion.com>

* remove float suffix for logical integers, add missing float suffixes for logical float zeros, and make YAW_MOTORS an int

---------

Co-authored-by: Master Chief <master-chief@the-void.com>
Co-authored-by: Silvan Fuhrer <silvan@auterion.com>
This commit is contained in:
somebody-once-told-me 2024-01-26 09:17:54 -05:00 committed by GitHub
parent 1d70e32551
commit f40ede6087
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 386 additions and 0 deletions

View File

@ -44,3 +44,4 @@ target_include_directories(ControlAllocation PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
target_link_libraries(ControlAllocation PRIVATE mathlib)
px4_add_unit_gtest(SRC ControlAllocationPseudoInverseTest.cpp LINKLIBS ControlAllocation)
px4_add_functional_gtest(SRC ControlAllocationSequentialDesaturationTest.cpp LINKLIBS ControlAllocation ActuatorEffectiveness)

View File

@ -0,0 +1,385 @@
/****************************************************************************
*
* Copyright (C) 2024 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ControlAllocationSequentialDesaturationTest.cpp
*
* Tests for Control Allocation Sequential Desaturation Algorithms
*
*/
#include <gtest/gtest.h>
#include <ControlAllocationSequentialDesaturation.hpp>
#include <../ActuatorEffectiveness/ActuatorEffectivenessRotors.hpp>
using namespace matrix;
namespace
{
// Makes and returns a Geometry object for a "standard" quad-x quadcopter.
ActuatorEffectivenessRotors::Geometry make_quad_x_geometry()
{
ActuatorEffectivenessRotors::Geometry geometry = {};
geometry.rotors[0].position(0) = 1.0f;
geometry.rotors[0].position(1) = 1.0f;
geometry.rotors[0].position(2) = 0.0f;
geometry.rotors[0].axis(0) = 0.0f;
geometry.rotors[0].axis(1) = 0.0f;
geometry.rotors[0].axis(2) = -1.0f;
geometry.rotors[0].thrust_coef = 1.0f;
geometry.rotors[0].moment_ratio = 0.05f;
geometry.rotors[1].position(0) = -1.0f;
geometry.rotors[1].position(1) = -1.0f;
geometry.rotors[1].position(2) = 0.0f;
geometry.rotors[1].axis(0) = 0.0f;
geometry.rotors[1].axis(1) = 0.0f;
geometry.rotors[1].axis(2) = -1.0f;
geometry.rotors[1].thrust_coef = 1.0f;
geometry.rotors[1].moment_ratio = 0.05f;
geometry.rotors[2].position(0) = 1.0f;
geometry.rotors[2].position(1) = -1.0f;
geometry.rotors[2].position(2) = 0.0f;
geometry.rotors[2].axis(0) = 0.0f;
geometry.rotors[2].axis(1) = 0.0f;
geometry.rotors[2].axis(2) = -1.0f;
geometry.rotors[2].thrust_coef = 1.0f;
geometry.rotors[2].moment_ratio = -0.05f;
geometry.rotors[3].position(0) = -1.0f;
geometry.rotors[3].position(1) = 1.0f;
geometry.rotors[3].position(2) = 0.0f;
geometry.rotors[3].axis(0) = 0.0f;
geometry.rotors[3].axis(1) = 0.0f;
geometry.rotors[3].axis(2) = -1.0f;
geometry.rotors[3].thrust_coef = 1.0f;
geometry.rotors[3].moment_ratio = -0.05f;
geometry.num_rotors = 4;
return geometry;
}
// Returns an effective matrix for a sample quad-copter configuration.
ActuatorEffectiveness::EffectivenessMatrix make_quad_x_effectiveness()
{
ActuatorEffectiveness::EffectivenessMatrix effectiveness;
effectiveness.setZero();
const auto geometry = make_quad_x_geometry();
ActuatorEffectivenessRotors::computeEffectivenessMatrix(geometry, effectiveness);
return effectiveness;
}
// Configures a ControlAllocationSequentialDesaturation object for a sample quad-copter.
void setup_quad_allocator(ControlAllocationSequentialDesaturation &allocator)
{
const auto effectiveness = make_quad_x_effectiveness();
matrix::Vector<float, ActuatorEffectiveness::NUM_ACTUATORS> actuator_trim;
matrix::Vector<float, ActuatorEffectiveness::NUM_ACTUATORS> linearization_point;
constexpr bool UPDATE_NORMALIZATION_SCALE{false};
allocator.setEffectivenessMatrix(
effectiveness,
actuator_trim,
linearization_point,
ActuatorEffectiveness::NUM_ACTUATORS,
UPDATE_NORMALIZATION_SCALE
);
}
static constexpr float EXPECT_NEAR_TOL{1e-4f};
} // namespace
// This tests that yaw-only control setpoint at zero actuator setpoint results in zero actuator
// allocation.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledOnlyYaw)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
control_sp(ControlAllocation::ControlAxis::YAW) = 1.f;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = 0.f;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
matrix::Vector<float, ActuatorEffectiveness::NUM_ACTUATORS> zero;
EXPECT_EQ(actuator_sp, zero);
}
// This tests that a control setpoint for z-thrust returns the desired actuator setpoint.
// Each motor should have an actuator setpoint that when summed together should be equal to
// control setpoint.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustZ)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
// Negative, because +z is "downward".
constexpr float THRUST_Z_TOTAL{-0.75f};
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
control_sp(ControlAllocation::ControlAxis::YAW) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
constexpr int MOTOR_COUNT{4};
constexpr float THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT};
for (int i{0}; i < MOTOR_COUNT; ++i) {
EXPECT_NEAR(actuator_sp(i), THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
}
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
}
}
// This tests that a control setpoint for z-thrust + yaw returns the desired actuator setpoint.
// This test does not saturate the yaw response.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustAndYaw)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
// Negative, because +z is "downward".
constexpr float THRUST_Z_TOTAL{-0.75f};
// This is low enough to not saturate the motors.
constexpr float YAW_CONTROL_SP{0.02f};
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
control_sp(ControlAllocation::ControlAxis::YAW) = YAW_CONTROL_SP;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
// This value is based off of the effectiveness matrix. If the effectiveness matrix is changed,
// this will need to be changed.
constexpr float YAW_EFFECTIVENESS_FACTOR{5.f};
constexpr float YAW_DIFF_PER_MOTOR{YAW_CONTROL_SP * YAW_EFFECTIVENESS_FACTOR};
// At yaw condition, there will be 2 different actuator values.
constexpr int MOTOR_COUNT{4};
constexpr float HIGH_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + YAW_DIFF_PER_MOTOR};
constexpr float LOW_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT - YAW_DIFF_PER_MOTOR};
for (int i{0}; i < MOTOR_COUNT / 2; ++i) {
EXPECT_NEAR(actuator_sp(i), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
}
for (int i{MOTOR_COUNT / 2}; i < MOTOR_COUNT; ++i) {
EXPECT_NEAR(actuator_sp(i), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
}
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
}
}
// This tests that a control setpoint for z-thrust + yaw returns the desired actuator setpoint.
// This test saturates the yaw response, but does not reduce total thrust.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustAndSaturatedYaw)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
// Negative, because +z is "downward".
constexpr float THRUST_Z_TOTAL{-0.75f};
// This is arbitrarily high to trigger strongest possible (saturated) yaw response.
constexpr float YAW_CONTROL_SP{0.25f};
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
control_sp(ControlAllocation::ControlAxis::YAW) = YAW_CONTROL_SP;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
// At max yaw, only 2 motors will carry all of the thrust.
constexpr int YAW_MOTORS{2};
constexpr float THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / YAW_MOTORS};
for (int i{0}; i < YAW_MOTORS; ++i) {
EXPECT_NEAR(actuator_sp(i), THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
}
for (int i{YAW_MOTORS}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
}
}
// This tests that a control setpoint for z-thrust + pitch returns the desired actuator setpoint.
// This test does not saturate the pitch response.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustAndPitch)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
// Negative, because +z is "downward".
constexpr float THRUST_Z_TOTAL{-0.75f};
// This is low enough to not saturate the motors.
constexpr float PITCH_CONTROL_SP{0.1f};
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = PITCH_CONTROL_SP;
control_sp(ControlAllocation::ControlAxis::YAW) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
// This value is based off of the effectiveness matrix. If the effectiveness matrix is changed,
// this will need to be changed.
constexpr int MOTOR_COUNT{4};
constexpr float PITCH_DIFF_PER_MOTOR{PITCH_CONTROL_SP / MOTOR_COUNT};
// At control set point, there will be 2 different actuator values.
constexpr float HIGH_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_DIFF_PER_MOTOR};
constexpr float LOW_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT - PITCH_DIFF_PER_MOTOR};
EXPECT_NEAR(actuator_sp(0), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(1), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(2), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(3), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
}
}
// This tests that a control setpoint for z-thrust + yaw returns the desired actuator setpoint.
// This test saturates yaw and demonstrates reduction of thrust for yaw.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledReducedThrustAndYaw)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
// Negative, because +z is "downward".
constexpr float DESIRED_THRUST_Z_PER_MOTOR{0.8f};
constexpr int MOTOR_COUNT{4};
constexpr float THRUST_Z_TOTAL{-DESIRED_THRUST_Z_PER_MOTOR * MOTOR_COUNT};
// This is arbitrarily high to trigger strongest possible (saturated) yaw response.
constexpr float YAW_CONTROL_SP{1.f};
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
control_sp(ControlAllocation::ControlAxis::YAW) = YAW_CONTROL_SP;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
// In the case of yaw saturation, thrust per motor will be reduced by the hard-coded
// magic-number yaw margin of 0.15f.
constexpr float YAW_MARGIN{0.15f}; // get this from a centralized source when available.
constexpr float YAW_DIFF_PER_MOTOR{1.0f + YAW_MARGIN - DESIRED_THRUST_Z_PER_MOTOR};
// At control set point, there will be 2 different actuator values.
constexpr float HIGH_THRUST_Z_PER_MOTOR{DESIRED_THRUST_Z_PER_MOTOR + YAW_DIFF_PER_MOTOR - YAW_MARGIN};
constexpr float LOW_THRUST_Z_PER_MOTOR{DESIRED_THRUST_Z_PER_MOTOR - YAW_DIFF_PER_MOTOR - YAW_MARGIN};
EXPECT_NEAR(actuator_sp(0), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(1), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(2), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(3), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
}
}
// This tests that a control setpoint for z-thrust + pitch returns the desired actuator setpoint.
// This test saturates the pitch response such that thrust is reduced to (partially) compensate.
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledReducedThrustAndPitch)
{
ControlAllocationSequentialDesaturation allocator;
setup_quad_allocator(allocator);
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
// Negative, because +z is "downward".
constexpr float THRUST_Z_TOTAL{-0.75f * 4.f};
// This is high enough to saturate the pitch control.
constexpr float PITCH_CONTROL_SP{2.f};
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
control_sp(ControlAllocation::ControlAxis::PITCH) = PITCH_CONTROL_SP;
control_sp(ControlAllocation::ControlAxis::YAW) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
allocator.setControlSetpoint(control_sp);
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
allocator.allocate();
const auto &actuator_sp = allocator.getActuatorSetpoint();
constexpr int MOTOR_COUNT{4};
// The maximum actuator value is
// THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_CONTROL_SP / MOTOR_COUNT.
// The amount over 1 is the amount that each motor is reduced by.
// At control set point, there will be 2 different actuator values.
constexpr float OVERAGE_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_CONTROL_SP / MOTOR_COUNT - 1};
EXPECT_TRUE(OVERAGE_PER_MOTOR > 0.f);
constexpr float HIGH_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_CONTROL_SP / MOTOR_COUNT - OVERAGE_PER_MOTOR};
constexpr float LOW_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT - PITCH_CONTROL_SP / MOTOR_COUNT - OVERAGE_PER_MOTOR};
EXPECT_NEAR(actuator_sp(0), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(1), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(2), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
EXPECT_NEAR(actuator_sp(3), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
}
}