forked from Archive/PX4-Autopilot
Control Allocation Sequential Desaturation unit tests (#22612)
* [control_allocation] add unit tests for ControlAllocationSequentialDesaturation * complete first 2 unit tests * add yaw test * add more unit tests * improve comments * format * address review comments * submodule update * Update src/modules/control_allocator/ControlAllocation/ControlAllocationSequentialDesaturationTest.cpp Co-authored-by: Silvan Fuhrer <silvan@auterion.com> * Update src/modules/control_allocator/ControlAllocation/ControlAllocationSequentialDesaturationTest.cpp Co-authored-by: Silvan Fuhrer <silvan@auterion.com> * Update src/modules/control_allocator/ControlAllocation/ControlAllocationSequentialDesaturationTest.cpp Co-authored-by: Silvan Fuhrer <silvan@auterion.com> * remove float suffix for logical integers, add missing float suffixes for logical float zeros, and make YAW_MOTORS an int --------- Co-authored-by: Master Chief <master-chief@the-void.com> Co-authored-by: Silvan Fuhrer <silvan@auterion.com>
This commit is contained in:
parent
1d70e32551
commit
f40ede6087
|
@ -44,3 +44,4 @@ target_include_directories(ControlAllocation PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
|||
target_link_libraries(ControlAllocation PRIVATE mathlib)
|
||||
|
||||
px4_add_unit_gtest(SRC ControlAllocationPseudoInverseTest.cpp LINKLIBS ControlAllocation)
|
||||
px4_add_functional_gtest(SRC ControlAllocationSequentialDesaturationTest.cpp LINKLIBS ControlAllocation ActuatorEffectiveness)
|
||||
|
|
|
@ -0,0 +1,385 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (C) 2024 PX4 Development Team. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* 3. Neither the name PX4 nor the names of its contributors may be
|
||||
* used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
****************************************************************************/
|
||||
|
||||
/**
|
||||
* @file ControlAllocationSequentialDesaturationTest.cpp
|
||||
*
|
||||
* Tests for Control Allocation Sequential Desaturation Algorithms
|
||||
*
|
||||
*/
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <ControlAllocationSequentialDesaturation.hpp>
|
||||
#include <../ActuatorEffectiveness/ActuatorEffectivenessRotors.hpp>
|
||||
|
||||
using namespace matrix;
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
// Makes and returns a Geometry object for a "standard" quad-x quadcopter.
|
||||
ActuatorEffectivenessRotors::Geometry make_quad_x_geometry()
|
||||
{
|
||||
ActuatorEffectivenessRotors::Geometry geometry = {};
|
||||
geometry.rotors[0].position(0) = 1.0f;
|
||||
geometry.rotors[0].position(1) = 1.0f;
|
||||
geometry.rotors[0].position(2) = 0.0f;
|
||||
geometry.rotors[0].axis(0) = 0.0f;
|
||||
geometry.rotors[0].axis(1) = 0.0f;
|
||||
geometry.rotors[0].axis(2) = -1.0f;
|
||||
geometry.rotors[0].thrust_coef = 1.0f;
|
||||
geometry.rotors[0].moment_ratio = 0.05f;
|
||||
|
||||
geometry.rotors[1].position(0) = -1.0f;
|
||||
geometry.rotors[1].position(1) = -1.0f;
|
||||
geometry.rotors[1].position(2) = 0.0f;
|
||||
geometry.rotors[1].axis(0) = 0.0f;
|
||||
geometry.rotors[1].axis(1) = 0.0f;
|
||||
geometry.rotors[1].axis(2) = -1.0f;
|
||||
geometry.rotors[1].thrust_coef = 1.0f;
|
||||
geometry.rotors[1].moment_ratio = 0.05f;
|
||||
|
||||
geometry.rotors[2].position(0) = 1.0f;
|
||||
geometry.rotors[2].position(1) = -1.0f;
|
||||
geometry.rotors[2].position(2) = 0.0f;
|
||||
geometry.rotors[2].axis(0) = 0.0f;
|
||||
geometry.rotors[2].axis(1) = 0.0f;
|
||||
geometry.rotors[2].axis(2) = -1.0f;
|
||||
geometry.rotors[2].thrust_coef = 1.0f;
|
||||
geometry.rotors[2].moment_ratio = -0.05f;
|
||||
|
||||
geometry.rotors[3].position(0) = -1.0f;
|
||||
geometry.rotors[3].position(1) = 1.0f;
|
||||
geometry.rotors[3].position(2) = 0.0f;
|
||||
geometry.rotors[3].axis(0) = 0.0f;
|
||||
geometry.rotors[3].axis(1) = 0.0f;
|
||||
geometry.rotors[3].axis(2) = -1.0f;
|
||||
geometry.rotors[3].thrust_coef = 1.0f;
|
||||
geometry.rotors[3].moment_ratio = -0.05f;
|
||||
|
||||
geometry.num_rotors = 4;
|
||||
|
||||
return geometry;
|
||||
}
|
||||
|
||||
// Returns an effective matrix for a sample quad-copter configuration.
|
||||
ActuatorEffectiveness::EffectivenessMatrix make_quad_x_effectiveness()
|
||||
{
|
||||
ActuatorEffectiveness::EffectivenessMatrix effectiveness;
|
||||
effectiveness.setZero();
|
||||
const auto geometry = make_quad_x_geometry();
|
||||
ActuatorEffectivenessRotors::computeEffectivenessMatrix(geometry, effectiveness);
|
||||
return effectiveness;
|
||||
}
|
||||
|
||||
// Configures a ControlAllocationSequentialDesaturation object for a sample quad-copter.
|
||||
void setup_quad_allocator(ControlAllocationSequentialDesaturation &allocator)
|
||||
{
|
||||
const auto effectiveness = make_quad_x_effectiveness();
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_ACTUATORS> actuator_trim;
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_ACTUATORS> linearization_point;
|
||||
constexpr bool UPDATE_NORMALIZATION_SCALE{false};
|
||||
allocator.setEffectivenessMatrix(
|
||||
effectiveness,
|
||||
actuator_trim,
|
||||
linearization_point,
|
||||
ActuatorEffectiveness::NUM_ACTUATORS,
|
||||
UPDATE_NORMALIZATION_SCALE
|
||||
);
|
||||
}
|
||||
|
||||
static constexpr float EXPECT_NEAR_TOL{1e-4f};
|
||||
|
||||
} // namespace
|
||||
|
||||
// This tests that yaw-only control setpoint at zero actuator setpoint results in zero actuator
|
||||
// allocation.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledOnlyYaw)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = 1.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = 0.f;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_ACTUATORS> zero;
|
||||
EXPECT_EQ(actuator_sp, zero);
|
||||
}
|
||||
|
||||
// This tests that a control setpoint for z-thrust returns the desired actuator setpoint.
|
||||
// Each motor should have an actuator setpoint that when summed together should be equal to
|
||||
// control setpoint.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustZ)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
// Negative, because +z is "downward".
|
||||
constexpr float THRUST_Z_TOTAL{-0.75f};
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
constexpr int MOTOR_COUNT{4};
|
||||
constexpr float THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT};
|
||||
|
||||
for (int i{0}; i < MOTOR_COUNT; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
}
|
||||
|
||||
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
|
||||
}
|
||||
}
|
||||
|
||||
// This tests that a control setpoint for z-thrust + yaw returns the desired actuator setpoint.
|
||||
// This test does not saturate the yaw response.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustAndYaw)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
// Negative, because +z is "downward".
|
||||
constexpr float THRUST_Z_TOTAL{-0.75f};
|
||||
// This is low enough to not saturate the motors.
|
||||
constexpr float YAW_CONTROL_SP{0.02f};
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = YAW_CONTROL_SP;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
// This value is based off of the effectiveness matrix. If the effectiveness matrix is changed,
|
||||
// this will need to be changed.
|
||||
constexpr float YAW_EFFECTIVENESS_FACTOR{5.f};
|
||||
constexpr float YAW_DIFF_PER_MOTOR{YAW_CONTROL_SP * YAW_EFFECTIVENESS_FACTOR};
|
||||
// At yaw condition, there will be 2 different actuator values.
|
||||
constexpr int MOTOR_COUNT{4};
|
||||
constexpr float HIGH_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + YAW_DIFF_PER_MOTOR};
|
||||
constexpr float LOW_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT - YAW_DIFF_PER_MOTOR};
|
||||
|
||||
for (int i{0}; i < MOTOR_COUNT / 2; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
}
|
||||
|
||||
for (int i{MOTOR_COUNT / 2}; i < MOTOR_COUNT; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
}
|
||||
|
||||
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
|
||||
}
|
||||
}
|
||||
|
||||
// This tests that a control setpoint for z-thrust + yaw returns the desired actuator setpoint.
|
||||
// This test saturates the yaw response, but does not reduce total thrust.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustAndSaturatedYaw)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
// Negative, because +z is "downward".
|
||||
constexpr float THRUST_Z_TOTAL{-0.75f};
|
||||
// This is arbitrarily high to trigger strongest possible (saturated) yaw response.
|
||||
constexpr float YAW_CONTROL_SP{0.25f};
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = YAW_CONTROL_SP;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
// At max yaw, only 2 motors will carry all of the thrust.
|
||||
constexpr int YAW_MOTORS{2};
|
||||
constexpr float THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / YAW_MOTORS};
|
||||
|
||||
for (int i{0}; i < YAW_MOTORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
}
|
||||
|
||||
for (int i{YAW_MOTORS}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
|
||||
}
|
||||
}
|
||||
|
||||
// This tests that a control setpoint for z-thrust + pitch returns the desired actuator setpoint.
|
||||
// This test does not saturate the pitch response.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledThrustAndPitch)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
// Negative, because +z is "downward".
|
||||
constexpr float THRUST_Z_TOTAL{-0.75f};
|
||||
// This is low enough to not saturate the motors.
|
||||
constexpr float PITCH_CONTROL_SP{0.1f};
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = PITCH_CONTROL_SP;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
// This value is based off of the effectiveness matrix. If the effectiveness matrix is changed,
|
||||
// this will need to be changed.
|
||||
constexpr int MOTOR_COUNT{4};
|
||||
constexpr float PITCH_DIFF_PER_MOTOR{PITCH_CONTROL_SP / MOTOR_COUNT};
|
||||
// At control set point, there will be 2 different actuator values.
|
||||
constexpr float HIGH_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_DIFF_PER_MOTOR};
|
||||
constexpr float LOW_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT - PITCH_DIFF_PER_MOTOR};
|
||||
EXPECT_NEAR(actuator_sp(0), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(1), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(2), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(3), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
|
||||
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
|
||||
}
|
||||
}
|
||||
|
||||
// This tests that a control setpoint for z-thrust + yaw returns the desired actuator setpoint.
|
||||
// This test saturates yaw and demonstrates reduction of thrust for yaw.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledReducedThrustAndYaw)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
// Negative, because +z is "downward".
|
||||
constexpr float DESIRED_THRUST_Z_PER_MOTOR{0.8f};
|
||||
constexpr int MOTOR_COUNT{4};
|
||||
constexpr float THRUST_Z_TOTAL{-DESIRED_THRUST_Z_PER_MOTOR * MOTOR_COUNT};
|
||||
// This is arbitrarily high to trigger strongest possible (saturated) yaw response.
|
||||
constexpr float YAW_CONTROL_SP{1.f};
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = YAW_CONTROL_SP;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
// In the case of yaw saturation, thrust per motor will be reduced by the hard-coded
|
||||
// magic-number yaw margin of 0.15f.
|
||||
constexpr float YAW_MARGIN{0.15f}; // get this from a centralized source when available.
|
||||
constexpr float YAW_DIFF_PER_MOTOR{1.0f + YAW_MARGIN - DESIRED_THRUST_Z_PER_MOTOR};
|
||||
// At control set point, there will be 2 different actuator values.
|
||||
constexpr float HIGH_THRUST_Z_PER_MOTOR{DESIRED_THRUST_Z_PER_MOTOR + YAW_DIFF_PER_MOTOR - YAW_MARGIN};
|
||||
constexpr float LOW_THRUST_Z_PER_MOTOR{DESIRED_THRUST_Z_PER_MOTOR - YAW_DIFF_PER_MOTOR - YAW_MARGIN};
|
||||
EXPECT_NEAR(actuator_sp(0), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(1), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(2), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(3), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
|
||||
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
|
||||
}
|
||||
}
|
||||
|
||||
// This tests that a control setpoint for z-thrust + pitch returns the desired actuator setpoint.
|
||||
// This test saturates the pitch response such that thrust is reduced to (partially) compensate.
|
||||
TEST(ControlAllocationSequentialDesaturationTest, AirmodeDisabledReducedThrustAndPitch)
|
||||
{
|
||||
ControlAllocationSequentialDesaturation allocator;
|
||||
setup_quad_allocator(allocator);
|
||||
matrix::Vector<float, ActuatorEffectiveness::NUM_AXES> control_sp;
|
||||
// Negative, because +z is "downward".
|
||||
constexpr float THRUST_Z_TOTAL{-0.75f * 4.f};
|
||||
// This is high enough to saturate the pitch control.
|
||||
constexpr float PITCH_CONTROL_SP{2.f};
|
||||
control_sp(ControlAllocation::ControlAxis::ROLL) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::PITCH) = PITCH_CONTROL_SP;
|
||||
control_sp(ControlAllocation::ControlAxis::YAW) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_X) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Y) = 0.f;
|
||||
control_sp(ControlAllocation::ControlAxis::THRUST_Z) = THRUST_Z_TOTAL;
|
||||
allocator.setControlSetpoint(control_sp);
|
||||
|
||||
// Since MC_AIRMODE was not set explicitly, assume airmode is disabled.
|
||||
allocator.allocate();
|
||||
|
||||
const auto &actuator_sp = allocator.getActuatorSetpoint();
|
||||
constexpr int MOTOR_COUNT{4};
|
||||
// The maximum actuator value is
|
||||
// THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_CONTROL_SP / MOTOR_COUNT.
|
||||
// The amount over 1 is the amount that each motor is reduced by.
|
||||
// At control set point, there will be 2 different actuator values.
|
||||
constexpr float OVERAGE_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_CONTROL_SP / MOTOR_COUNT - 1};
|
||||
EXPECT_TRUE(OVERAGE_PER_MOTOR > 0.f);
|
||||
constexpr float HIGH_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT + PITCH_CONTROL_SP / MOTOR_COUNT - OVERAGE_PER_MOTOR};
|
||||
constexpr float LOW_THRUST_Z_PER_MOTOR{-THRUST_Z_TOTAL / MOTOR_COUNT - PITCH_CONTROL_SP / MOTOR_COUNT - OVERAGE_PER_MOTOR};
|
||||
EXPECT_NEAR(actuator_sp(0), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(1), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(2), HIGH_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
EXPECT_NEAR(actuator_sp(3), LOW_THRUST_Z_PER_MOTOR, EXPECT_NEAR_TOL);
|
||||
|
||||
for (int i{MOTOR_COUNT}; i < ActuatorEffectiveness::NUM_ACTUATORS; ++i) {
|
||||
EXPECT_NEAR(actuator_sp(i), 0.f, EXPECT_NEAR_TOL);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue