Merge branch 'master' of github.com:PX4/Firmware

This commit is contained in:
Lorenz Meier 2013-06-06 22:14:19 +02:00
commit b52aeea746
15 changed files with 2903 additions and 28 deletions

293
Tools/sdlog2_dump.py Normal file
View File

@ -0,0 +1,293 @@
#!/usr/bin/env python
"""Dump binary log generated by sdlog2 or APM as CSV
Usage: python sdlog2_dump.py <log.bin> [-v] [-e] [-d delimiter] [-n null] [-m MSG[.field1,field2,...]]
-v Use plain debug output instead of CSV.
-e Recover from errors.
-d Use "delimiter" in CSV. Default is ",".
-n Use "null" as placeholder for empty values in CSV. Default is empty.
-m MSG[.field1,field2,...]
Dump only messages of specified type, and only specified fields.
Multiple -m options allowed."""
__author__ = "Anton Babushkin"
__version__ = "1.2"
import struct, sys
class SDLog2Parser:
BLOCK_SIZE = 8192
MSG_HEADER_LEN = 3
MSG_HEAD1 = 0xA3
MSG_HEAD2 = 0x95
MSG_FORMAT_PACKET_LEN = 89
MSG_FORMAT_STRUCT = "BB4s16s64s"
MSG_TYPE_FORMAT = 0x80
FORMAT_TO_STRUCT = {
"b": ("b", None),
"B": ("B", None),
"h": ("h", None),
"H": ("H", None),
"i": ("i", None),
"I": ("I", None),
"f": ("f", None),
"n": ("4s", None),
"N": ("16s", None),
"Z": ("64s", None),
"c": ("h", 0.01),
"C": ("H", 0.01),
"e": ("i", 0.01),
"E": ("I", 0.01),
"L": ("i", 0.0000001),
"M": ("b", None),
"q": ("q", None),
"Q": ("Q", None),
}
__csv_delim = ","
__csv_null = ""
__msg_filter = []
__time_msg = None
__debug_out = False
__correct_errors = False
def __init__(self):
return
def reset(self):
self.__msg_descrs = {} # message descriptions by message type map
self.__msg_labels = {} # message labels by message name map
self.__msg_names = [] # message names in the same order as FORMAT messages
self.__buffer = "" # buffer for input binary data
self.__ptr = 0 # read pointer in buffer
self.__csv_columns = [] # CSV file columns in correct order in format "MSG.label"
self.__csv_data = {} # current values for all columns
self.__csv_updated = False
self.__msg_filter_map = {} # filter in form of map, with '*" expanded to full list of fields
def setCSVDelimiter(self, csv_delim):
self.__csv_delim = csv_delim
def setCSVNull(self, csv_null):
self.__csv_null = csv_null
def setMsgFilter(self, msg_filter):
self.__msg_filter = msg_filter
def setTimeMsg(self, time_msg):
self.__time_msg = time_msg
def setDebugOut(self, debug_out):
self.__debug_out = debug_out
def setCorrectErrors(self, correct_errors):
self.__correct_errors = correct_errors
def process(self, fn):
self.reset()
if self.__debug_out:
# init __msg_filter_map
for msg_name, show_fields in self.__msg_filter:
self.__msg_filter_map[msg_name] = show_fields
first_data_msg = True
f = open(fn, "r")
bytes_read = 0
while True:
chunk = f.read(self.BLOCK_SIZE)
if len(chunk) == 0:
break
self.__buffer = self.__buffer[self.__ptr:] + chunk
self.__ptr = 0
while self.__bytesLeft() >= self.MSG_HEADER_LEN:
head1 = ord(self.__buffer[self.__ptr])
head2 = ord(self.__buffer[self.__ptr+1])
if (head1 != self.MSG_HEAD1 or head2 != self.MSG_HEAD2):
if self.__correct_errors:
self.__ptr += 1
continue
else:
raise Exception("Invalid header at %i (0x%X): %02X %02X, must be %02X %02X" % (bytes_read + self.__ptr, bytes_read + self.__ptr, head1, head2, self.MSG_HEAD1, self.MSG_HEAD2))
msg_type = ord(self.__buffer[self.__ptr+2])
if msg_type == self.MSG_TYPE_FORMAT:
# parse FORMAT message
if self.__bytesLeft() < self.MSG_FORMAT_PACKET_LEN:
break
self.__parseMsgDescr()
else:
# parse data message
msg_descr = self.__msg_descrs[msg_type]
if msg_descr == None:
raise Exception("Unknown msg type: %i" % msg_type)
msg_length = msg_descr[0]
if self.__bytesLeft() < msg_length:
break
if first_data_msg:
# build CSV columns and init data map
self.__initCSV()
first_data_msg = False
self.__parseMsg(msg_descr)
bytes_read += self.__ptr
if not self.__debug_out and self.__time_msg != None and self.__csv_updated:
self.__printCSVRow()
f.close()
def __bytesLeft(self):
return len(self.__buffer) - self.__ptr
def __filterMsg(self, msg_name):
show_fields = "*"
if len(self.__msg_filter_map) > 0:
show_fields = self.__msg_filter_map.get(msg_name)
return show_fields
def __initCSV(self):
if len(self.__msg_filter) == 0:
for msg_name in self.__msg_names:
self.__msg_filter.append((msg_name, "*"))
for msg_name, show_fields in self.__msg_filter:
if show_fields == "*":
show_fields = self.__msg_labels.get(msg_name, [])
self.__msg_filter_map[msg_name] = show_fields
for field in show_fields:
full_label = msg_name + "." + field
self.__csv_columns.append(full_label)
self.__csv_data[full_label] = None
print self.__csv_delim.join(self.__csv_columns)
def __printCSVRow(self):
s = []
for full_label in self.__csv_columns:
v = self.__csv_data[full_label]
if v == None:
v = self.__csv_null
else:
v = str(v)
s.append(v)
print self.__csv_delim.join(s)
def __parseMsgDescr(self):
data = struct.unpack(self.MSG_FORMAT_STRUCT, self.__buffer[self.__ptr + 3 : self.__ptr + self.MSG_FORMAT_PACKET_LEN])
msg_type = data[0]
if msg_type != self.MSG_TYPE_FORMAT:
msg_length = data[1]
msg_name = data[2].strip("\0")
msg_format = data[3].strip("\0")
msg_labels = data[4].strip("\0").split(",")
# Convert msg_format to struct.unpack format string
msg_struct = ""
msg_mults = []
for c in msg_format:
try:
f = self.FORMAT_TO_STRUCT[c]
msg_struct += f[0]
msg_mults.append(f[1])
except KeyError as e:
raise Exception("Unsupported format char: %s in message %s (%i)" % (c, msg_name, msg_type))
msg_struct = "<" + msg_struct # force little-endian
self.__msg_descrs[msg_type] = (msg_length, msg_name, msg_format, msg_labels, msg_struct, msg_mults)
self.__msg_labels[msg_name] = msg_labels
self.__msg_names.append(msg_name)
if self.__debug_out:
if self.__filterMsg(msg_name) != None:
print "MSG FORMAT: type = %i, length = %i, name = %s, format = %s, labels = %s, struct = %s, mults = %s" % (
msg_type, msg_length, msg_name, msg_format, str(msg_labels), msg_struct, msg_mults)
self.__ptr += self.MSG_FORMAT_PACKET_LEN
def __parseMsg(self, msg_descr):
msg_length, msg_name, msg_format, msg_labels, msg_struct, msg_mults = msg_descr
if not self.__debug_out and self.__time_msg != None and msg_name == self.__time_msg and self.__csv_updated:
self.__printCSVRow()
self.__csv_updated = False
show_fields = self.__filterMsg(msg_name)
if (show_fields != None):
data = list(struct.unpack(msg_struct, self.__buffer[self.__ptr+self.MSG_HEADER_LEN:self.__ptr+msg_length]))
for i in xrange(len(data)):
if type(data[i]) is str:
data[i] = data[i].strip("\0")
m = msg_mults[i]
if m != None:
data[i] = data[i] * m
if self.__debug_out:
s = []
for i in xrange(len(data)):
label = msg_labels[i]
if show_fields == "*" or label in show_fields:
s.append(label + "=" + str(data[i]))
print "MSG %s: %s" % (msg_name, ", ".join(s))
else:
# update CSV data buffer
for i in xrange(len(data)):
label = msg_labels[i]
if label in show_fields:
self.__csv_data[msg_name + "." + label] = data[i]
if self.__time_msg != None and msg_name != self.__time_msg:
self.__csv_updated = True
if self.__time_msg == None:
self.__printCSVRow()
self.__ptr += msg_length
def _main():
if len(sys.argv) < 2:
print "Usage: python sdlog2_dump.py <log.bin> [-v] [-e] [-d delimiter] [-n null] [-m MSG[.field1,field2,...]] [-t TIME_MSG_NAME]\n"
print "\t-v\tUse plain debug output instead of CSV.\n"
print "\t-e\tRecover from errors.\n"
print "\t-d\tUse \"delimiter\" in CSV. Default is \",\".\n"
print "\t-n\tUse \"null\" as placeholder for empty values in CSV. Default is empty.\n"
print "\t-m MSG[.field1,field2,...]\n\t\tDump only messages of specified type, and only specified fields.\n\t\tMultiple -m options allowed."
print "\t-t\tSpecify TIME message name to group data messages by time and significantly reduce duplicate output.\n"
return
fn = sys.argv[1]
debug_out = False
correct_errors = False
msg_filter = []
csv_null = ""
csv_delim = ","
time_msg = None
opt = None
for arg in sys.argv[2:]:
if opt != None:
if opt == "d":
csv_delim = arg
elif opt == "n":
csv_null = arg
elif opt == "t":
time_msg = arg
elif opt == "m":
show_fields = "*"
a = arg.split(".")
if len(a) > 1:
show_fields = a[1].split(",")
msg_filter.append((a[0], show_fields))
opt = None
else:
if arg == "-v":
debug_out = True
elif arg == "-e":
correct_errors = True
elif arg == "-d":
opt = "d"
elif arg == "-n":
opt = "n"
elif arg == "-m":
opt = "m"
elif arg == "-t":
opt = "t"
if csv_delim == "\\t":
csv_delim = "\t"
parser = SDLog2Parser()
parser.setCSVDelimiter(csv_delim)
parser.setCSVNull(csv_null)
parser.setMsgFilter(msg_filter)
parser.setTimeMsg(time_msg)
parser.setDebugOut(debug_out)
parser.setCorrectErrors(correct_errors)
parser.process(fn)
if __name__ == "__main__":
_main()

View File

@ -62,7 +62,8 @@ MODULES += modules/gpio_led
# Estimation modules (EKF / other filters)
#
MODULES += modules/attitude_estimator_ekf
MODULES += modules/position_estimator_mc
MODULES += modules/attitude_estimator_so3_comp
#MODULES += modules/position_estimator_mc
MODULES += modules/position_estimator
MODULES += modules/att_pos_estimator_ekf
@ -79,6 +80,7 @@ MODULES += modules/multirotor_pos_control
# Logging
#
MODULES += modules/sdlog
MODULES += modules/sdlog2
#
# Library modules

View File

@ -70,6 +70,14 @@ ARCHCPUFLAGS_CORTEXM3 = -mcpu=cortex-m3 \
-march=armv7-m \
-mfloat-abi=soft
ARCHINSTRUMENTATIONDEFINES_CORTEXM4F = -finstrument-functions \
-ffixed-r10
ARCHINSTRUMENTATIONDEFINES_CORTEXM4 = -finstrument-functions \
-ffixed-r10
ARCHINSTRUMENTATIONDEFINES_CORTEXM3 =
# Pick the right set of flags for the architecture.
#
ARCHCPUFLAGS = $(ARCHCPUFLAGS_$(CONFIG_ARCH))
@ -91,8 +99,8 @@ ARCHOPTIMIZATION = $(MAXOPTIMIZATION) \
# enable precise stack overflow tracking
# note - requires corresponding support in NuttX
INSTRUMENTATIONDEFINES = -finstrument-functions \
-ffixed-r10
INSTRUMENTATIONDEFINES = $(ARCHINSTRUMENTATIONDEFINES_$(CONFIG_ARCH))
# Language-specific flags
#
ARCHCFLAGS = -std=gnu99

View File

@ -1,7 +1,6 @@
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: @author Example User <mail@example.com>
* Copyright (c) 2012, 2013 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -33,27 +32,33 @@
****************************************************************************/
/**
* @file px4_deamon_app.c
* Deamon application example for PX4 autopilot
* @file px4_daemon_app.c
* daemon application example for PX4 autopilot
*
* @author Example User <mail@example.com>
*/
#include <nuttx/config.h>
#include <nuttx/sched.h>
#include <unistd.h>
#include <stdio.h>
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int deamon_task; /**< Handle of deamon task / thread */
#include <systemlib/systemlib.h>
#include <systemlib/err.h>
static bool thread_should_exit = false; /**< daemon exit flag */
static bool thread_running = false; /**< daemon status flag */
static int daemon_task; /**< Handle of daemon task / thread */
/**
* Deamon management function.
* daemon management function.
*/
__EXPORT int px4_deamon_app_main(int argc, char *argv[]);
__EXPORT int px4_daemon_app_main(int argc, char *argv[]);
/**
* Mainloop of deamon.
* Mainloop of daemon.
*/
int px4_deamon_thread_main(int argc, char *argv[]);
int px4_daemon_thread_main(int argc, char *argv[]);
/**
* Print the correct usage.
@ -64,20 +69,19 @@ static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: deamon {start|stop|status} [-p <additional params>]\n\n");
exit(1);
warnx("%s\n", reason);
errx(1, "usage: daemon {start|stop|status} [-p <additional params>]\n\n");
}
/**
* The deamon app only briefly exists to start
* The daemon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int px4_deamon_app_main(int argc, char *argv[])
int px4_daemon_app_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
@ -85,17 +89,17 @@ int px4_deamon_app_main(int argc, char *argv[])
if (!strcmp(argv[1], "start")) {
if (thread_running) {
printf("deamon already running\n");
warnx("daemon already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
deamon_task = task_spawn("deamon",
daemon_task = task_spawn("daemon",
SCHED_DEFAULT,
SCHED_PRIORITY_DEFAULT,
4096,
px4_deamon_thread_main,
px4_daemon_thread_main,
(argv) ? (const char **)&argv[2] : (const char **)NULL);
exit(0);
}
@ -107,9 +111,9 @@ int px4_deamon_app_main(int argc, char *argv[])
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tdeamon app is running\n");
warnx("\trunning\n");
} else {
printf("\tdeamon app not started\n");
warnx("\tnot started\n");
}
exit(0);
}
@ -118,18 +122,18 @@ int px4_deamon_app_main(int argc, char *argv[])
exit(1);
}
int px4_deamon_thread_main(int argc, char *argv[]) {
int px4_daemon_thread_main(int argc, char *argv[]) {
printf("[deamon] starting\n");
warnx("[daemon] starting\n");
thread_running = true;
while (!thread_should_exit) {
printf("Hello Deamon!\n");
warnx("Hello daemon!\n");
sleep(10);
}
printf("[deamon] exiting.\n");
warnx("[daemon] exiting.\n");
thread_running = false;

View File

@ -0,0 +1,5 @@
Synopsis
nsh> attitude_estimator_so3_comp start -d /dev/ttyS1 -b 115200
Option -d is for debugging packet. See code for detailed packet structure.

View File

@ -0,0 +1,833 @@
/*
* Author: Hyon Lim <limhyon@gmail.com, hyonlim@snu.ac.kr>
*
* @file attitude_estimator_so3_comp_main.c
*
* Implementation of nonlinear complementary filters on the SO(3).
* This code performs attitude estimation by using accelerometer, gyroscopes and magnetometer.
* Result is provided as quaternion, 1-2-3 Euler angle and rotation matrix.
*
* Theory of nonlinear complementary filters on the SO(3) is based on [1].
* Quaternion realization of [1] is based on [2].
* Optmized quaternion update code is based on Sebastian Madgwick's implementation.
*
* References
* [1] Mahony, R.; Hamel, T.; Pflimlin, Jean-Michel, "Nonlinear Complementary Filters on the Special Orthogonal Group," Automatic Control, IEEE Transactions on , vol.53, no.5, pp.1203,1218, June 2008
* [2] Euston, M.; Coote, P.; Mahony, R.; Jonghyuk Kim; Hamel, T., "A complementary filter for attitude estimation of a fixed-wing UAV," Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on , vol., no., pp.340,345, 22-26 Sept. 2008
*/
#include <nuttx/config.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stdbool.h>
#include <poll.h>
#include <fcntl.h>
#include <float.h>
#include <nuttx/sched.h>
#include <sys/prctl.h>
#include <termios.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <uORB/uORB.h>
#include <uORB/topics/debug_key_value.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/parameter_update.h>
#include <drivers/drv_hrt.h>
#include <systemlib/systemlib.h>
#include <systemlib/perf_counter.h>
#include <systemlib/err.h>
#ifdef __cplusplus
extern "C" {
#endif
#include "attitude_estimator_so3_comp_params.h"
#ifdef __cplusplus
}
#endif
extern "C" __EXPORT int attitude_estimator_so3_comp_main(int argc, char *argv[]);
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int attitude_estimator_so3_comp_task; /**< Handle of deamon task / thread */
static float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; /** quaternion of sensor frame relative to auxiliary frame */
static float dq0 = 0.0f, dq1 = 0.0f, dq2 = 0.0f, dq3 = 0.0f; /** quaternion of sensor frame relative to auxiliary frame */
static float gyro_bias[3] = {0.0f, 0.0f, 0.0f}; /** bias estimation */
static bool bFilterInit = false;
//! Auxiliary variables to reduce number of repeated operations
static float q0q0, q0q1, q0q2, q0q3;
static float q1q1, q1q2, q1q3;
static float q2q2, q2q3;
static float q3q3;
//! Serial packet related
static int uart;
static int baudrate;
/**
* Mainloop of attitude_estimator_so3_comp.
*/
int attitude_estimator_so3_comp_thread_main(int argc, char *argv[]);
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason)
fprintf(stderr, "%s\n", reason);
fprintf(stderr, "usage: attitude_estimator_so3_comp {start|stop|status} [-d <devicename>] [-b <baud rate>]\n"
"-d and -b options are for separate visualization with raw data (quaternion packet) transfer\n"
"ex) attitude_estimator_so3_comp start -d /dev/ttyS1 -b 115200\n");
exit(1);
}
/**
* The attitude_estimator_so3_comp app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int attitude_estimator_so3_comp_main(int argc, char *argv[])
{
if (argc < 1)
usage("missing command");
if (!strcmp(argv[1], "start")) {
if (thread_running) {
printf("attitude_estimator_so3_comp already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
attitude_estimator_so3_comp_task = task_spawn("attitude_estimator_so3_comp",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 5,
12400,
attitude_estimator_so3_comp_thread_main,
(const char **)argv);
exit(0);
}
if (!strcmp(argv[1], "stop")) {
thread_should_exit = true;
while(thread_running){
usleep(200000);
printf(".");
}
printf("terminated.");
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
printf("\tattitude_estimator_so3_comp app is running\n");
} else {
printf("\tattitude_estimator_so3_comp app not started\n");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
//---------------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float invSqrt(float number) {
volatile long i;
volatile float x, y;
volatile const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * (( long * ) &y);
i = 0x5f375a86 - ( i >> 1 );
y = * (( float * ) &i);
y = y * ( f - ( x * y * y ) );
return y;
}
//! Using accelerometer, sense the gravity vector.
//! Using magnetometer, sense yaw.
void NonlinearSO3AHRSinit(float ax, float ay, float az, float mx, float my, float mz)
{
float initialRoll, initialPitch;
float cosRoll, sinRoll, cosPitch, sinPitch;
float magX, magY;
float initialHdg, cosHeading, sinHeading;
initialRoll = atan2(-ay, -az);
initialPitch = atan2(ax, -az);
cosRoll = cosf(initialRoll);
sinRoll = sinf(initialRoll);
cosPitch = cosf(initialPitch);
sinPitch = sinf(initialPitch);
magX = mx * cosPitch + my * sinRoll * sinPitch + mz * cosRoll * sinPitch;
magY = my * cosRoll - mz * sinRoll;
initialHdg = atan2f(-magY, magX);
cosRoll = cosf(initialRoll * 0.5f);
sinRoll = sinf(initialRoll * 0.5f);
cosPitch = cosf(initialPitch * 0.5f);
sinPitch = sinf(initialPitch * 0.5f);
cosHeading = cosf(initialHdg * 0.5f);
sinHeading = sinf(initialHdg * 0.5f);
q0 = cosRoll * cosPitch * cosHeading + sinRoll * sinPitch * sinHeading;
q1 = sinRoll * cosPitch * cosHeading - cosRoll * sinPitch * sinHeading;
q2 = cosRoll * sinPitch * cosHeading + sinRoll * cosPitch * sinHeading;
q3 = cosRoll * cosPitch * sinHeading - sinRoll * sinPitch * cosHeading;
// auxillary variables to reduce number of repeated operations, for 1st pass
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
}
void NonlinearSO3AHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz, float twoKp, float twoKi, float dt) {
float recipNorm;
float halfex = 0.0f, halfey = 0.0f, halfez = 0.0f;
//! Make filter converge to initial solution faster
//! This function assumes you are in static position.
//! WARNING : in case air reboot, this can cause problem. But this is very
//! unlikely happen.
if(bFilterInit == false)
{
NonlinearSO3AHRSinit(ax,ay,az,mx,my,mz);
bFilterInit = true;
}
//! If magnetometer measurement is available, use it.
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
float hx, hy, hz, bx, bz;
float halfwx, halfwy, halfwz;
// Normalise magnetometer measurement
// Will sqrt work better? PX4 system is powerful enough?
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Reference direction of Earth's magnetic field
hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
hz = 2 * mx * (q1q3 - q0q2) + 2 * my * (q2q3 + q0q1) + 2 * mz * (0.5 - q1q1 - q2q2);
bx = sqrt(hx * hx + hy * hy);
bz = hz;
// Estimated direction of magnetic field
halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex += (my * halfwz - mz * halfwy);
halfey += (mz * halfwx - mx * halfwz);
halfez += (mx * halfwy - my * halfwx);
}
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
float halfvx, halfvy, halfvz;
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity and magnetic field
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex += ay * halfvz - az * halfvy;
halfey += az * halfvx - ax * halfvz;
halfez += ax * halfvy - ay * halfvx;
}
// Apply feedback only when valid data has been gathered from the accelerometer or magnetometer
if(halfex != 0.0f && halfey != 0.0f && halfez != 0.0f) {
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
gyro_bias[0] += twoKi * halfex * dt; // integral error scaled by Ki
gyro_bias[1] += twoKi * halfey * dt;
gyro_bias[2] += twoKi * halfez * dt;
gx += gyro_bias[0]; // apply integral feedback
gy += gyro_bias[1];
gz += gyro_bias[2];
}
else {
gyro_bias[0] = 0.0f; // prevent integral windup
gyro_bias[1] = 0.0f;
gyro_bias[2] = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
//! Integrate rate of change of quaternion
#if 0
gx *= (0.5f * dt); // pre-multiply common factors
gy *= (0.5f * dt);
gz *= (0.5f * dt);
#endif
// Time derivative of quaternion. q_dot = 0.5*q\otimes omega.
//! q_k = q_{k-1} + dt*\dot{q}
//! \dot{q} = 0.5*q \otimes P(\omega)
dq0 = 0.5f*(-q1 * gx - q2 * gy - q3 * gz);
dq1 = 0.5f*(q0 * gx + q2 * gz - q3 * gy);
dq2 = 0.5f*(q0 * gy - q1 * gz + q3 * gx);
dq3 = 0.5f*(q0 * gz + q1 * gy - q2 * gx);
q0 += dt*dq0;
q1 += dt*dq1;
q2 += dt*dq2;
q3 += dt*dq3;
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
}
void send_uart_byte(char c)
{
write(uart,&c,1);
}
void send_uart_bytes(uint8_t *data, int length)
{
write(uart,data,(size_t)(sizeof(uint8_t)*length));
}
void send_uart_float(float f) {
uint8_t * b = (uint8_t *) &f;
//! Assume float is 4-bytes
for(int i=0; i<4; i++) {
uint8_t b1 = (b[i] >> 4) & 0x0f;
uint8_t b2 = (b[i] & 0x0f);
uint8_t c1 = (b1 < 10) ? ('0' + b1) : 'A' + b1 - 10;
uint8_t c2 = (b2 < 10) ? ('0' + b2) : 'A' + b2 - 10;
send_uart_bytes(&c1,1);
send_uart_bytes(&c2,1);
}
}
void send_uart_float_arr(float *arr, int length)
{
for(int i=0;i<length;++i)
{
send_uart_float(arr[i]);
send_uart_byte(',');
}
}
int open_uart(int baud, const char *uart_name, struct termios *uart_config_original, bool *is_usb)
{
int speed;
switch (baud) {
case 0: speed = B0; break;
case 50: speed = B50; break;
case 75: speed = B75; break;
case 110: speed = B110; break;
case 134: speed = B134; break;
case 150: speed = B150; break;
case 200: speed = B200; break;
case 300: speed = B300; break;
case 600: speed = B600; break;
case 1200: speed = B1200; break;
case 1800: speed = B1800; break;
case 2400: speed = B2400; break;
case 4800: speed = B4800; break;
case 9600: speed = B9600; break;
case 19200: speed = B19200; break;
case 38400: speed = B38400; break;
case 57600: speed = B57600; break;
case 115200: speed = B115200; break;
case 230400: speed = B230400; break;
case 460800: speed = B460800; break;
case 921600: speed = B921600; break;
default:
printf("ERROR: Unsupported baudrate: %d\n\tsupported examples:\n\n\t9600\n19200\n38400\n57600\n115200\n230400\n460800\n921600\n\n", baud);
return -EINVAL;
}
printf("[so3_comp_filt] UART is %s, baudrate is %d\n", uart_name, baud);
uart = open(uart_name, O_RDWR | O_NOCTTY);
/* Try to set baud rate */
struct termios uart_config;
int termios_state;
*is_usb = false;
/* make some wild guesses including that USB serial is indicated by either /dev/ttyACM0 or /dev/console */
if (strcmp(uart_name, "/dev/ttyACM0") != OK && strcmp(uart_name, "/dev/console") != OK) {
/* Back up the original uart configuration to restore it after exit */
if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) {
printf("ERROR getting baudrate / termios config for %s: %d\n", uart_name, termios_state);
close(uart);
return -1;
}
/* Fill the struct for the new configuration */
tcgetattr(uart, &uart_config);
/* Clear ONLCR flag (which appends a CR for every LF) */
uart_config.c_oflag &= ~ONLCR;
/* Set baud rate */
if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
printf("ERROR setting baudrate / termios config for %s: %d (cfsetispeed, cfsetospeed)\n", uart_name, termios_state);
close(uart);
return -1;
}
if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) {
printf("ERROR setting baudrate / termios config for %s (tcsetattr)\n", uart_name);
close(uart);
return -1;
}
} else {
*is_usb = true;
}
return uart;
}
/*
* [Rot_matrix,x_aposteriori,P_aposteriori] = attitudeKalmanfilter(dt,z_k,x_aposteriori_k,P_aposteriori_k,knownConst)
*/
/*
* EKF Attitude Estimator main function.
*
* Estimates the attitude recursively once started.
*
* @param argc number of commandline arguments (plus command name)
* @param argv strings containing the arguments
*/
int attitude_estimator_so3_comp_thread_main(int argc, char *argv[])
{
const unsigned int loop_interval_alarm = 6500; // loop interval in microseconds
//! Serial debug related
int ch;
struct termios uart_config_original;
bool usb_uart;
bool debug_mode = false;
char *device_name = "/dev/ttyS2";
baudrate = 115200;
//! Time constant
float dt = 0.005f;
/* output euler angles */
float euler[3] = {0.0f, 0.0f, 0.0f};
float Rot_matrix[9] = {1.f, 0, 0,
0, 1.f, 0,
0, 0, 1.f
}; /**< init: identity matrix */
float acc[3] = {0.0f, 0.0f, 0.0f};
float gyro[3] = {0.0f, 0.0f, 0.0f};
float mag[3] = {0.0f, 0.0f, 0.0f};
/* work around some stupidity in task_create's argv handling */
argc -= 2;
argv += 2;
//! -d <device_name>, default : /dev/ttyS2
//! -b <baud_rate>, default : 115200
while ((ch = getopt(argc,argv,"d:b:")) != EOF){
switch(ch){
case 'b':
baudrate = strtoul(optarg, NULL, 10);
if(baudrate == 0)
printf("invalid baud rate '%s'",optarg);
break;
case 'd':
device_name = optarg;
debug_mode = true;
break;
default:
usage("invalid argument");
}
}
if(debug_mode){
printf("Opening debugging port for 3D visualization\n");
uart = open_uart(baudrate, device_name, &uart_config_original, &usb_uart);
if (uart < 0)
printf("could not open %s", device_name);
else
printf("Open port success\n");
}
// print text
printf("Nonlinear SO3 Attitude Estimator initialized..\n\n");
fflush(stdout);
int overloadcounter = 19;
/* store start time to guard against too slow update rates */
uint64_t last_run = hrt_absolute_time();
struct sensor_combined_s raw;
memset(&raw, 0, sizeof(raw));
//! Initialize attitude vehicle uORB message.
struct vehicle_attitude_s att;
memset(&att, 0, sizeof(att));
struct vehicle_status_s state;
memset(&state, 0, sizeof(state));
uint64_t last_data = 0;
uint64_t last_measurement = 0;
/* subscribe to raw data */
int sub_raw = orb_subscribe(ORB_ID(sensor_combined));
/* rate-limit raw data updates to 200Hz */
orb_set_interval(sub_raw, 4);
/* subscribe to param changes */
int sub_params = orb_subscribe(ORB_ID(parameter_update));
/* subscribe to system state*/
int sub_state = orb_subscribe(ORB_ID(vehicle_status));
/* advertise attitude */
orb_advert_t pub_att = orb_advertise(ORB_ID(vehicle_attitude), &att);
int loopcounter = 0;
int printcounter = 0;
thread_running = true;
/* advertise debug value */
// struct debug_key_value_s dbg = { .key = "", .value = 0.0f };
// orb_advert_t pub_dbg = -1;
float sensor_update_hz[3] = {0.0f, 0.0f, 0.0f};
// XXX write this out to perf regs
/* keep track of sensor updates */
uint32_t sensor_last_count[3] = {0, 0, 0};
uint64_t sensor_last_timestamp[3] = {0, 0, 0};
struct attitude_estimator_so3_comp_params so3_comp_params;
struct attitude_estimator_so3_comp_param_handles so3_comp_param_handles;
/* initialize parameter handles */
parameters_init(&so3_comp_param_handles);
uint64_t start_time = hrt_absolute_time();
bool initialized = false;
float gyro_offsets[3] = { 0.0f, 0.0f, 0.0f };
unsigned offset_count = 0;
/* register the perf counter */
perf_counter_t so3_comp_loop_perf = perf_alloc(PC_ELAPSED, "attitude_estimator_so3_comp");
/* Main loop*/
while (!thread_should_exit) {
struct pollfd fds[2];
fds[0].fd = sub_raw;
fds[0].events = POLLIN;
fds[1].fd = sub_params;
fds[1].events = POLLIN;
int ret = poll(fds, 2, 1000);
if (ret < 0) {
/* XXX this is seriously bad - should be an emergency */
} else if (ret == 0) {
/* check if we're in HIL - not getting sensor data is fine then */
orb_copy(ORB_ID(vehicle_status), sub_state, &state);
if (!state.flag_hil_enabled) {
fprintf(stderr,
"[att so3_comp] WARNING: Not getting sensors - sensor app running?\n");
}
} else {
/* only update parameters if they changed */
if (fds[1].revents & POLLIN) {
/* read from param to clear updated flag */
struct parameter_update_s update;
orb_copy(ORB_ID(parameter_update), sub_params, &update);
/* update parameters */
parameters_update(&so3_comp_param_handles, &so3_comp_params);
}
/* only run filter if sensor values changed */
if (fds[0].revents & POLLIN) {
/* get latest measurements */
orb_copy(ORB_ID(sensor_combined), sub_raw, &raw);
if (!initialized) {
gyro_offsets[0] += raw.gyro_rad_s[0];
gyro_offsets[1] += raw.gyro_rad_s[1];
gyro_offsets[2] += raw.gyro_rad_s[2];
offset_count++;
if (hrt_absolute_time() - start_time > 3000000LL) {
initialized = true;
gyro_offsets[0] /= offset_count;
gyro_offsets[1] /= offset_count;
gyro_offsets[2] /= offset_count;
}
} else {
perf_begin(so3_comp_loop_perf);
/* Calculate data time difference in seconds */
dt = (raw.timestamp - last_measurement) / 1000000.0f;
last_measurement = raw.timestamp;
uint8_t update_vect[3] = {0, 0, 0};
/* Fill in gyro measurements */
if (sensor_last_count[0] != raw.gyro_counter) {
update_vect[0] = 1;
sensor_last_count[0] = raw.gyro_counter;
sensor_update_hz[0] = 1e6f / (raw.timestamp - sensor_last_timestamp[0]);
sensor_last_timestamp[0] = raw.timestamp;
}
gyro[0] = raw.gyro_rad_s[0] - gyro_offsets[0];
gyro[1] = raw.gyro_rad_s[1] - gyro_offsets[1];
gyro[2] = raw.gyro_rad_s[2] - gyro_offsets[2];
/* update accelerometer measurements */
if (sensor_last_count[1] != raw.accelerometer_counter) {
update_vect[1] = 1;
sensor_last_count[1] = raw.accelerometer_counter;
sensor_update_hz[1] = 1e6f / (raw.timestamp - sensor_last_timestamp[1]);
sensor_last_timestamp[1] = raw.timestamp;
}
acc[0] = raw.accelerometer_m_s2[0];
acc[1] = raw.accelerometer_m_s2[1];
acc[2] = raw.accelerometer_m_s2[2];
/* update magnetometer measurements */
if (sensor_last_count[2] != raw.magnetometer_counter) {
update_vect[2] = 1;
sensor_last_count[2] = raw.magnetometer_counter;
sensor_update_hz[2] = 1e6f / (raw.timestamp - sensor_last_timestamp[2]);
sensor_last_timestamp[2] = raw.timestamp;
}
mag[0] = raw.magnetometer_ga[0];
mag[1] = raw.magnetometer_ga[1];
mag[2] = raw.magnetometer_ga[2];
uint64_t now = hrt_absolute_time();
unsigned int time_elapsed = now - last_run;
last_run = now;
if (time_elapsed > loop_interval_alarm) {
//TODO: add warning, cpu overload here
// if (overloadcounter == 20) {
// printf("CPU OVERLOAD DETECTED IN ATTITUDE ESTIMATOR EKF (%lu > %lu)\n", time_elapsed, loop_interval_alarm);
// overloadcounter = 0;
// }
overloadcounter++;
}
static bool const_initialized = false;
/* initialize with good values once we have a reasonable dt estimate */
if (!const_initialized && dt < 0.05f && dt > 0.005f) {
dt = 0.005f;
parameters_update(&so3_comp_param_handles, &so3_comp_params);
const_initialized = true;
}
/* do not execute the filter if not initialized */
if (!const_initialized) {
continue;
}
uint64_t timing_start = hrt_absolute_time();
// NOTE : Accelerometer is reversed.
// Because proper mount of PX4 will give you a reversed accelerometer readings.
NonlinearSO3AHRSupdate(gyro[0],gyro[1],gyro[2],-acc[0],-acc[1],-acc[2],mag[0],mag[1],mag[2],so3_comp_params.Kp,so3_comp_params.Ki, dt);
// Convert q->R.
Rot_matrix[0] = q0q0 + q1q1 - q2q2 - q3q3;// 11
Rot_matrix[1] = 2.0 * (q1*q2 + q0*q3); // 12
Rot_matrix[2] = 2.0 * (q1*q3 - q0*q2); // 13
Rot_matrix[3] = 2.0 * (q1*q2 - q0*q3); // 21
Rot_matrix[4] = q0q0 - q1q1 + q2q2 - q3q3;// 22
Rot_matrix[5] = 2.0 * (q2*q3 + q0*q1); // 23
Rot_matrix[6] = 2.0 * (q1*q3 + q0*q2); // 31
Rot_matrix[7] = 2.0 * (q2*q3 - q0*q1); // 32
Rot_matrix[8] = q0q0 - q1q1 - q2q2 + q3q3;// 33
//1-2-3 Representation.
//Equation (290)
//Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors, James Diebel.
// Existing PX4 EKF code was generated by MATLAB which uses coloum major order matrix.
euler[0] = atan2f(Rot_matrix[5], Rot_matrix[8]); //! Roll
euler[1] = -asinf(Rot_matrix[2]); //! Pitch
euler[2] = atan2f(Rot_matrix[1],Rot_matrix[0]); //! Yaw
/* swap values for next iteration, check for fatal inputs */
if (isfinite(euler[0]) && isfinite(euler[1]) && isfinite(euler[2])) {
/* Do something */
} else {
/* due to inputs or numerical failure the output is invalid, skip it */
continue;
}
if (last_data > 0 && raw.timestamp - last_data > 12000) printf("[attitude estimator so3_comp] sensor data missed! (%llu)\n", raw.timestamp - last_data);
last_data = raw.timestamp;
/* send out */
att.timestamp = raw.timestamp;
// XXX Apply the same transformation to the rotation matrix
att.roll = euler[0] - so3_comp_params.roll_off;
att.pitch = euler[1] - so3_comp_params.pitch_off;
att.yaw = euler[2] - so3_comp_params.yaw_off;
//! Euler angle rate. But it needs to be investigated again.
/*
att.rollspeed = 2.0f*(-q1*dq0 + q0*dq1 - q3*dq2 + q2*dq3);
att.pitchspeed = 2.0f*(-q2*dq0 + q3*dq1 + q0*dq2 - q1*dq3);
att.yawspeed = 2.0f*(-q3*dq0 -q2*dq1 + q1*dq2 + q0*dq3);
*/
att.rollspeed = gyro[0];
att.pitchspeed = gyro[1];
att.yawspeed = gyro[2];
att.rollacc = 0;
att.pitchacc = 0;
att.yawacc = 0;
//! Quaternion
att.q[0] = q0;
att.q[1] = q1;
att.q[2] = q2;
att.q[3] = q3;
att.q_valid = true;
/* TODO: Bias estimation required */
memcpy(&att.rate_offsets, &(gyro_bias), sizeof(att.rate_offsets));
/* copy rotation matrix */
memcpy(&att.R, Rot_matrix, sizeof(Rot_matrix));
att.R_valid = true;
if (isfinite(att.roll) && isfinite(att.pitch) && isfinite(att.yaw)) {
// Broadcast
orb_publish(ORB_ID(vehicle_attitude), pub_att, &att);
} else {
warnx("NaN in roll/pitch/yaw estimate!");
}
perf_end(so3_comp_loop_perf);
//! This will print out debug packet to visualization software
if(debug_mode)
{
float quat[4];
quat[0] = q0;
quat[1] = q1;
quat[2] = q2;
quat[3] = q3;
send_uart_float_arr(quat,4);
send_uart_byte('\n');
}
}
}
}
loopcounter++;
}// while
thread_running = false;
/* Reset the UART flags to original state */
if (!usb_uart)
tcsetattr(uart, TCSANOW, &uart_config_original);
return 0;
}

View File

@ -0,0 +1,63 @@
/*
* Author: Hyon Lim <limhyon@gmail.com, hyonlim@snu.ac.kr>
*
* @file attitude_estimator_so3_comp_params.c
*
* Implementation of nonlinear complementary filters on the SO(3).
* This code performs attitude estimation by using accelerometer, gyroscopes and magnetometer.
* Result is provided as quaternion, 1-2-3 Euler angle and rotation matrix.
*
* Theory of nonlinear complementary filters on the SO(3) is based on [1].
* Quaternion realization of [1] is based on [2].
* Optmized quaternion update code is based on Sebastian Madgwick's implementation.
*
* References
* [1] Mahony, R.; Hamel, T.; Pflimlin, Jean-Michel, "Nonlinear Complementary Filters on the Special Orthogonal Group," Automatic Control, IEEE Transactions on , vol.53, no.5, pp.1203,1218, June 2008
* [2] Euston, M.; Coote, P.; Mahony, R.; Jonghyuk Kim; Hamel, T., "A complementary filter for attitude estimation of a fixed-wing UAV," Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on , vol., no., pp.340,345, 22-26 Sept. 2008
*/
#include "attitude_estimator_so3_comp_params.h"
/* This is filter gain for nonlinear SO3 complementary filter */
/* NOTE : How to tune the gain? First of all, stick with this default gain. And let the quad in stable place.
Log the steady state reponse of filter. If it is too slow, increase SO3_COMP_KP.
If you are flying from ground to high altitude in short amount of time, please increase SO3_COMP_KI which
will compensate gyro bias which depends on temperature and vibration of your vehicle */
PARAM_DEFINE_FLOAT(SO3_COMP_KP, 1.0f); //! This parameter will give you about 15 seconds convergence time.
//! You can set this gain higher if you want more fast response.
//! But note that higher gain will give you also higher overshoot.
PARAM_DEFINE_FLOAT(SO3_COMP_KI, 0.05f); //! This gain will incorporate slow time-varying bias (e.g., temperature change)
//! This gain is depend on your vehicle status.
/* offsets in roll, pitch and yaw of sensor plane and body */
PARAM_DEFINE_FLOAT(ATT_ROLL_OFFS, 0.0f);
PARAM_DEFINE_FLOAT(ATT_PITCH_OFFS, 0.0f);
PARAM_DEFINE_FLOAT(ATT_YAW_OFFS, 0.0f);
int parameters_init(struct attitude_estimator_so3_comp_param_handles *h)
{
/* Filter gain parameters */
h->Kp = param_find("SO3_COMP_KP");
h->Ki = param_find("SO3_COMP_KI");
/* Attitude offset (WARNING: Do not change if you do not know what exactly this variable wil lchange) */
h->roll_off = param_find("ATT_ROLL_OFFS");
h->pitch_off = param_find("ATT_PITCH_OFFS");
h->yaw_off = param_find("ATT_YAW_OFFS");
return OK;
}
int parameters_update(const struct attitude_estimator_so3_comp_param_handles *h, struct attitude_estimator_so3_comp_params *p)
{
/* Update filter gain */
param_get(h->Kp, &(p->Kp));
param_get(h->Ki, &(p->Ki));
/* Update attitude offset */
param_get(h->roll_off, &(p->roll_off));
param_get(h->pitch_off, &(p->pitch_off));
param_get(h->yaw_off, &(p->yaw_off));
return OK;
}

View File

@ -0,0 +1,44 @@
/*
* Author: Hyon Lim <limhyon@gmail.com, hyonlim@snu.ac.kr>
*
* @file attitude_estimator_so3_comp_params.h
*
* Implementation of nonlinear complementary filters on the SO(3).
* This code performs attitude estimation by using accelerometer, gyroscopes and magnetometer.
* Result is provided as quaternion, 1-2-3 Euler angle and rotation matrix.
*
* Theory of nonlinear complementary filters on the SO(3) is based on [1].
* Quaternion realization of [1] is based on [2].
* Optmized quaternion update code is based on Sebastian Madgwick's implementation.
*
* References
* [1] Mahony, R.; Hamel, T.; Pflimlin, Jean-Michel, "Nonlinear Complementary Filters on the Special Orthogonal Group," Automatic Control, IEEE Transactions on , vol.53, no.5, pp.1203,1218, June 2008
* [2] Euston, M.; Coote, P.; Mahony, R.; Jonghyuk Kim; Hamel, T., "A complementary filter for attitude estimation of a fixed-wing UAV," Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on , vol., no., pp.340,345, 22-26 Sept. 2008
*/
#include <systemlib/param/param.h>
struct attitude_estimator_so3_comp_params {
float Kp;
float Ki;
float roll_off;
float pitch_off;
float yaw_off;
};
struct attitude_estimator_so3_comp_param_handles {
param_t Kp, Ki;
param_t roll_off, pitch_off, yaw_off;
};
/**
* Initialize all parameter handles and values
*
*/
int parameters_init(struct attitude_estimator_so3_comp_param_handles *h);
/**
* Update all parameters
*
*/
int parameters_update(const struct attitude_estimator_so3_comp_param_handles *h, struct attitude_estimator_so3_comp_params *p);

View File

@ -0,0 +1,8 @@
#
# Attitude estimator (Nonlinear SO3 complementary Filter)
#
MODULE_COMMAND = attitude_estimator_so3_comp
SRCS = attitude_estimator_so3_comp_main.cpp \
attitude_estimator_so3_comp_params.c

View File

@ -0,0 +1,133 @@
/****************************************************************************
*
* Copyright (c) 2013 PX4 Development Team. All rights reserved.
* Author: Anton Babushkin <rk3dov@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file logbuffer.c
*
* Ring FIFO buffer for binary log data.
*
* @author Anton Babushkin <rk3dov@gmail.com>
*/
#include <string.h>
#include <stdlib.h>
#include "logbuffer.h"
void logbuffer_init(struct logbuffer_s *lb, int size)
{
lb->size = size;
lb->write_ptr = 0;
lb->read_ptr = 0;
lb->data = malloc(lb->size);
}
int logbuffer_count(struct logbuffer_s *lb)
{
int n = lb->write_ptr - lb->read_ptr;
if (n < 0) {
n += lb->size;
}
return n;
}
int logbuffer_is_empty(struct logbuffer_s *lb)
{
return lb->read_ptr == lb->write_ptr;
}
bool logbuffer_write(struct logbuffer_s *lb, void *ptr, int size)
{
// bytes available to write
int available = lb->read_ptr - lb->write_ptr - 1;
if (available < 0)
available += lb->size;
if (size > available) {
// buffer overflow
return false;
}
char *c = (char *) ptr;
int n = lb->size - lb->write_ptr; // bytes to end of the buffer
if (n < size) {
// message goes over end of the buffer
memcpy(&(lb->data[lb->write_ptr]), c, n);
lb->write_ptr = 0;
} else {
n = 0;
}
// now: n = bytes already written
int p = size - n; // number of bytes to write
memcpy(&(lb->data[lb->write_ptr]), &(c[n]), p);
lb->write_ptr = (lb->write_ptr + p) % lb->size;
return true;
}
int logbuffer_get_ptr(struct logbuffer_s *lb, void **ptr, bool *is_part)
{
// bytes available to read
int available = lb->write_ptr - lb->read_ptr;
if (available == 0) {
return 0; // buffer is empty
}
int n = 0;
if (available > 0) {
// read pointer is before write pointer, all available bytes can be read
n = available;
*is_part = false;
} else {
// read pointer is after write pointer, read bytes from read_ptr to end of the buffer
n = lb->size - lb->read_ptr;
*is_part = true;
}
*ptr = &(lb->data[lb->read_ptr]);
return n;
}
void logbuffer_mark_read(struct logbuffer_s *lb, int n)
{
lb->read_ptr = (lb->read_ptr + n) % lb->size;
}

View File

@ -0,0 +1,68 @@
/****************************************************************************
*
* Copyright (c) 2013 PX4 Development Team. All rights reserved.
* Author: Anton Babushkin <rk3dov@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file logbuffer.h
*
* Ring FIFO buffer for binary log data.
*
* @author Anton Babushkin <rk3dov@gmail.com>
*/
#ifndef SDLOG2_RINGBUFFER_H_
#define SDLOG2_RINGBUFFER_H_
#include <stdbool.h>
struct logbuffer_s {
// all pointers are in bytes
int write_ptr;
int read_ptr;
int size;
char *data;
};
void logbuffer_init(struct logbuffer_s *lb, int size);
int logbuffer_count(struct logbuffer_s *lb);
int logbuffer_is_empty(struct logbuffer_s *lb);
bool logbuffer_write(struct logbuffer_s *lb, void *ptr, int size);
int logbuffer_get_ptr(struct logbuffer_s *lb, void **ptr, bool *is_part);
void logbuffer_mark_read(struct logbuffer_s *lb, int n);
#endif

View File

@ -0,0 +1,43 @@
############################################################################
#
# Copyright (c) 2013 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
#
# sdlog2 Application
#
MODULE_COMMAND = sdlog2
# The main thread only buffers to RAM, needs a high priority
MODULE_PRIORITY = "SCHED_PRIORITY_MAX-30"
SRCS = sdlog2.c \
logbuffer.c

1121
src/modules/sdlog2/sdlog2.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,98 @@
/****************************************************************************
*
* Copyright (c) 2013 PX4 Development Team. All rights reserved.
* Author: Anton Babushkin <rk3dov@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file sdlog2_format.h
*
* General log format structures and macro.
*
* @author Anton Babushkin <rk3dov@gmail.com>
*/
/*
Format characters in the format string for binary log messages
b : int8_t
B : uint8_t
h : int16_t
H : uint16_t
i : int32_t
I : uint32_t
f : float
n : char[4]
N : char[16]
Z : char[64]
c : int16_t * 100
C : uint16_t * 100
e : int32_t * 100
E : uint32_t * 100
L : int32_t latitude/longitude
M : uint8_t flight mode
q : int64_t
Q : uint64_t
*/
#ifndef SDLOG2_FORMAT_H_
#define SDLOG2_FORMAT_H_
#define LOG_PACKET_HEADER_LEN 3
#define LOG_PACKET_HEADER uint8_t head1, head2, msg_type;
#define LOG_PACKET_HEADER_INIT(id) .head1 = HEAD_BYTE1, .head2 = HEAD_BYTE2, .msg_type = id
// once the logging code is all converted we will remove these from
// this header
#define HEAD_BYTE1 0xA3 // Decimal 163
#define HEAD_BYTE2 0x95 // Decimal 149
struct log_format_s {
uint8_t type;
uint8_t length; // full packet length including header
char name[4];
char format[16];
char labels[64];
};
#define LOG_FORMAT(_name, _format, _labels) { \
.type = LOG_##_name##_MSG, \
.length = sizeof(struct log_##_name##_s) + LOG_PACKET_HEADER_LEN, \
.name = #_name, \
.format = _format, \
.labels = _labels \
}
#define LOG_FORMAT_MSG 0x80
#define LOG_PACKET_SIZE(_name) LOG_PACKET_HEADER_LEN + sizeof(struct log_##_name##_s)
#endif /* SDLOG2_FORMAT_H_ */

View File

@ -0,0 +1,152 @@
/****************************************************************************
*
* Copyright (c) 2013 PX4 Development Team. All rights reserved.
* Author: Anton Babushkin <rk3dov@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file sdlog2_messages.h
*
* Log messages and structures definition.
*
* @author Anton Babushkin <rk3dov@gmail.com>
*/
#ifndef SDLOG2_MESSAGES_H_
#define SDLOG2_MESSAGES_H_
#include "sdlog2_format.h"
/* define message formats */
#pragma pack(push, 1)
/* --- TIME - TIME STAMP --- */
#define LOG_TIME_MSG 1
struct log_TIME_s {
uint64_t t;
};
/* --- ATT - ATTITUDE --- */
#define LOG_ATT_MSG 2
struct log_ATT_s {
float roll;
float pitch;
float yaw;
};
/* --- ATSP - ATTITUDE SET POINT --- */
#define LOG_ATSP_MSG 3
struct log_ATSP_s {
float roll_sp;
float pitch_sp;
float yaw_sp;
};
/* --- IMU - IMU SENSORS --- */
#define LOG_IMU_MSG 4
struct log_IMU_s {
float acc_x;
float acc_y;
float acc_z;
float gyro_x;
float gyro_y;
float gyro_z;
float mag_x;
float mag_y;
float mag_z;
};
/* --- SENS - OTHER SENSORS --- */
#define LOG_SENS_MSG 5
struct log_SENS_s {
float baro_pres;
float baro_alt;
float baro_temp;
float diff_pres;
};
/* --- LPOS - LOCAL POSITION --- */
#define LOG_LPOS_MSG 6
struct log_LPOS_s {
float x;
float y;
float z;
float vx;
float vy;
float vz;
float hdg;
int32_t home_lat;
int32_t home_lon;
float home_alt;
};
/* --- LPSP - LOCAL POSITION SETPOINT --- */
#define LOG_LPSP_MSG 7
struct log_LPSP_s {
float x;
float y;
float z;
float yaw;
};
/* --- GPS - GPS POSITION --- */
#define LOG_GPS_MSG 8
struct log_GPS_s {
uint64_t gps_time;
uint8_t fix_type;
float eph;
float epv;
int32_t lat;
int32_t lon;
float alt;
float vel_n;
float vel_e;
float vel_d;
float cog;
};
#pragma pack(pop)
/* construct list of all message formats */
static const struct log_format_s log_formats[] = {
LOG_FORMAT(TIME, "Q", "StartTime"),
LOG_FORMAT(ATT, "fff", "Roll,Pitch,Yaw"),
LOG_FORMAT(ATSP, "fff", "RollSP,PitchSP,YawSP"),
LOG_FORMAT(IMU, "fffffffff", "AccX,AccY,AccZ,GyroX,GyroY,GyroZ,MagX,MagY,MagZ"),
LOG_FORMAT(SENS, "ffff", "BaroPres,BaroAlt,BaroTemp,DiffPres"),
LOG_FORMAT(LPOS, "fffffffLLf", "X,Y,Z,VX,VY,VZ,Heading,HomeLat,HomeLon,HomeAlt"),
LOG_FORMAT(LPSP, "ffff", "X,Y,Z,Yaw"),
LOG_FORMAT(GPS, "QBffLLfffff", "GPSTime,FixType,EPH,EPV,Lat,Lon,Alt,VelN,VelE,VelD,Cog"),
};
static const int log_formats_num = sizeof(log_formats) / sizeof(struct log_format_s);
#endif /* SDLOG2_MESSAGES_H_ */