forked from Archive/PX4-Autopilot
Updated to latest estimator version
This commit is contained in:
parent
d2b183c05b
commit
a937e972b0
|
@ -20,16 +20,9 @@ Vector3f dVelIMU;
|
|||
Vector3f dAngIMU;
|
||||
float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec)
|
||||
float dt; // time lapsed since last covariance prediction
|
||||
bool onGround = true; // boolean true when the flight vehicle is on the ground (not flying)
|
||||
bool useAirspeed = true; // boolean true if airspeed data is being used
|
||||
bool useCompass = true; // boolean true if magnetometer data is being used
|
||||
uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
|
||||
float innovVelPos[6]; // innovation output
|
||||
float varInnovVelPos[6]; // innovation variance output
|
||||
bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused
|
||||
bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused
|
||||
bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused
|
||||
bool fuseMagData = false; // boolean true when magnetometer data is to be fused
|
||||
|
||||
float velNED[3]; // North, East, Down velocity obs (m/s)
|
||||
float posNE[2]; // North, East position obs (m)
|
||||
|
@ -45,7 +38,6 @@ Vector3f magData; // magnetometer flux radings in X,Y,Z body axes
|
|||
float statesAtMagMeasTime[n_states]; // filter satates at the effective measurement time
|
||||
float innovVtas; // innovation output
|
||||
float varInnovVtas; // innovation variance output
|
||||
bool fuseVtasData = false; // boolean true when airspeed data is to be fused
|
||||
float VtasMeas; // true airspeed measurement (m/s)
|
||||
float statesAtVtasMeasTime[n_states]; // filter states at the effective measurement time
|
||||
float latRef; // WGS-84 latitude of reference point (rad)
|
||||
|
@ -64,9 +56,20 @@ float gpsLon;
|
|||
float gpsHgt;
|
||||
uint8_t GPSstatus;
|
||||
|
||||
// Baro input
|
||||
float baroHgt;
|
||||
|
||||
bool statesInitialised = false;
|
||||
|
||||
bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused
|
||||
bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused
|
||||
bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused
|
||||
bool fuseMagData = false; // boolean true when magnetometer data is to be fused
|
||||
bool fuseVtasData = false; // boolean true when airspeed data is to be fused
|
||||
|
||||
bool onGround = true; // boolean true when the flight vehicle is on the ground (not flying)
|
||||
bool useAirspeed = true; // boolean true if airspeed data is being used
|
||||
bool useCompass = true; // boolean true if magnetometer data is being used
|
||||
|
||||
float Vector3f::length(void) const
|
||||
{
|
||||
|
@ -182,23 +185,23 @@ void UpdateStrapdownEquationsNED()
|
|||
float deltaQuat[4];
|
||||
static float lastVelocity[3];
|
||||
const Vector3f gravityNED = {0.0,0.0,GRAVITY_MSS};
|
||||
|
||||
// Remove sensor bias errors
|
||||
|
||||
// Remove sensor bias errors
|
||||
correctedDelAng.x = dAngIMU.x - states[10];
|
||||
correctedDelAng.y = dAngIMU.y - states[11];
|
||||
correctedDelAng.z = dAngIMU.z - states[12];
|
||||
dVelIMU.x = dVelIMU.x;
|
||||
dVelIMU.y = dVelIMU.y;
|
||||
dVelIMU.z = dVelIMU.z;
|
||||
|
||||
// Save current measurements
|
||||
|
||||
// Save current measurements
|
||||
prevDelAng = correctedDelAng;
|
||||
|
||||
// Apply corrections for earths rotation rate and coning errors
|
||||
// * and + operators have been overloaded
|
||||
|
||||
// Apply corrections for earths rotation rate and coning errors
|
||||
// * and + operators have been overloaded
|
||||
correctedDelAng = correctedDelAng - Tnb*earthRateNED*dtIMU + 8.333333333333333e-2f*(prevDelAng % correctedDelAng);
|
||||
|
||||
// Convert the rotation vector to its equivalent quaternion
|
||||
|
||||
// Convert the rotation vector to its equivalent quaternion
|
||||
rotationMag = correctedDelAng.length();
|
||||
if (rotationMag < 1e-12f)
|
||||
{
|
||||
|
@ -215,15 +218,15 @@ void UpdateStrapdownEquationsNED()
|
|||
deltaQuat[2] = correctedDelAng.y*rotScaler;
|
||||
deltaQuat[3] = correctedDelAng.z*rotScaler;
|
||||
}
|
||||
|
||||
// Update the quaternions by rotating from the previous attitude through
|
||||
// the delta angle rotation quaternion
|
||||
|
||||
// Update the quaternions by rotating from the previous attitude through
|
||||
// the delta angle rotation quaternion
|
||||
qUpdated[0] = states[0]*deltaQuat[0] - states[1]*deltaQuat[1] - states[2]*deltaQuat[2] - states[3]*deltaQuat[3];
|
||||
qUpdated[1] = states[0]*deltaQuat[1] + states[1]*deltaQuat[0] + states[2]*deltaQuat[3] - states[3]*deltaQuat[2];
|
||||
qUpdated[2] = states[0]*deltaQuat[2] + states[2]*deltaQuat[0] + states[3]*deltaQuat[1] - states[1]*deltaQuat[3];
|
||||
qUpdated[3] = states[0]*deltaQuat[3] + states[3]*deltaQuat[0] + states[1]*deltaQuat[2] - states[2]*deltaQuat[1];
|
||||
|
||||
// Normalise the quaternions and update the quaternion states
|
||||
|
||||
// Normalise the quaternions and update the quaternion states
|
||||
quatMag = sqrt(sq(qUpdated[0]) + sq(qUpdated[1]) + sq(qUpdated[2]) + sq(qUpdated[3]));
|
||||
if (quatMag > 1e-16f)
|
||||
{
|
||||
|
@ -233,8 +236,8 @@ void UpdateStrapdownEquationsNED()
|
|||
states[2] = quatMagInv*qUpdated[2];
|
||||
states[3] = quatMagInv*qUpdated[3];
|
||||
}
|
||||
|
||||
// Calculate the body to nav cosine matrix
|
||||
|
||||
// Calculate the body to nav cosine matrix
|
||||
q00 = sq(states[0]);
|
||||
q11 = sq(states[1]);
|
||||
q22 = sq(states[2]);
|
||||
|
@ -245,7 +248,7 @@ void UpdateStrapdownEquationsNED()
|
|||
q12 = states[1]*states[2];
|
||||
q13 = states[1]*states[3];
|
||||
q23 = states[2]*states[3];
|
||||
|
||||
|
||||
Tbn.x.x = q00 + q11 - q22 - q33;
|
||||
Tbn.y.y = q00 - q11 + q22 - q33;
|
||||
Tbn.z.z = q00 - q11 - q22 + q33;
|
||||
|
@ -255,35 +258,35 @@ void UpdateStrapdownEquationsNED()
|
|||
Tbn.y.z = 2*(q23 - q01);
|
||||
Tbn.z.x = 2*(q13 - q02);
|
||||
Tbn.z.y = 2*(q23 + q01);
|
||||
|
||||
|
||||
Tnb = Tbn.transpose();
|
||||
|
||||
// transform body delta velocities to delta velocities in the nav frame
|
||||
// * and + operators have been overloaded
|
||||
|
||||
// transform body delta velocities to delta velocities in the nav frame
|
||||
// * and + operators have been overloaded
|
||||
//delVelNav = Tbn*dVelIMU + gravityNED*dtIMU;
|
||||
delVelNav.x = Tbn.x.x*dVelIMU.x + Tbn.x.y*dVelIMU.y + Tbn.x.z*dVelIMU.z + gravityNED.x*dtIMU;
|
||||
delVelNav.y = Tbn.y.x*dVelIMU.x + Tbn.y.y*dVelIMU.y + Tbn.y.z*dVelIMU.z + gravityNED.y*dtIMU;
|
||||
delVelNav.z = Tbn.z.x*dVelIMU.x + Tbn.z.y*dVelIMU.y + Tbn.z.z*dVelIMU.z + gravityNED.z*dtIMU;
|
||||
|
||||
// calculate the magnitude of the nav acceleration (required for GPS
|
||||
// variance estimation)
|
||||
|
||||
// calculate the magnitude of the nav acceleration (required for GPS
|
||||
// variance estimation)
|
||||
accNavMag = delVelNav.length()/dtIMU;
|
||||
|
||||
// If calculating position save previous velocity
|
||||
|
||||
// If calculating position save previous velocity
|
||||
lastVelocity[0] = states[4];
|
||||
lastVelocity[1] = states[5];
|
||||
lastVelocity[2] = states[6];
|
||||
|
||||
// Sum delta velocities to get velocity
|
||||
|
||||
// Sum delta velocities to get velocity
|
||||
states[4] = states[4] + delVelNav.x;
|
||||
states[5] = states[5] + delVelNav.y;
|
||||
states[6] = states[6] + delVelNav.z;
|
||||
|
||||
// If calculating postions, do a trapezoidal integration for position
|
||||
|
||||
// If calculating postions, do a trapezoidal integration for position
|
||||
states[7] = states[7] + 0.5f*(states[4] + lastVelocity[0])*dtIMU;
|
||||
states[8] = states[8] + 0.5f*(states[5] + lastVelocity[1])*dtIMU;
|
||||
states[9] = states[9] + 0.5f*(states[6] + lastVelocity[2])*dtIMU;
|
||||
|
||||
|
||||
}
|
||||
|
||||
void CovariancePrediction()
|
||||
|
@ -313,15 +316,15 @@ void CovariancePrediction()
|
|||
float dax_b;
|
||||
float day_b;
|
||||
float daz_b;
|
||||
|
||||
|
||||
// arrays
|
||||
float processNoise[n_states];
|
||||
float processNoise[21];
|
||||
float SF[14];
|
||||
float SG[8];
|
||||
float SQ[11];
|
||||
float SPP[13];
|
||||
float nextP[n_states][n_states];
|
||||
|
||||
float nextP[21][21];
|
||||
|
||||
// calculate covariance prediction process noise
|
||||
const float yawVarScale = 1.0f;
|
||||
windVelSigma = dt*0.1f;
|
||||
|
@ -335,7 +338,7 @@ void CovariancePrediction()
|
|||
for (uint8_t i=15; i<=17; i++) processNoise[i] = magEarthSigma;
|
||||
for (uint8_t i=18; i<=20; i++) processNoise[i] = magBodySigma;
|
||||
for (uint8_t i= 0; i<=20; i++) processNoise[i] = sq(processNoise[i]);
|
||||
|
||||
|
||||
// set variables used to calculate covariance growth
|
||||
dvx = summedDelVel.x;
|
||||
dvy = summedDelVel.y;
|
||||
|
@ -357,7 +360,7 @@ void CovariancePrediction()
|
|||
dvxCov = sq(dt*0.5f);
|
||||
dvyCov = sq(dt*0.5f);
|
||||
dvzCov = sq(dt*0.5f);
|
||||
|
||||
|
||||
// Predicted covariance calculation
|
||||
SF[0] = 2*dvx*q1 + 2*dvy*q2 + 2*dvz*q3;
|
||||
SF[1] = 2*dvx*q3 + 2*dvy*q0 - 2*dvz*q1;
|
||||
|
@ -373,7 +376,7 @@ void CovariancePrediction()
|
|||
SF[11] = q3/2;
|
||||
SF[12] = 2*dvz*q0;
|
||||
SF[13] = 2*dvy*q1;
|
||||
|
||||
|
||||
SG[0] = q0/2;
|
||||
SG[1] = sq(q3);
|
||||
SG[2] = sq(q2);
|
||||
|
@ -382,7 +385,7 @@ void CovariancePrediction()
|
|||
SG[5] = 2*q2*q3;
|
||||
SG[6] = 2*q1*q3;
|
||||
SG[7] = 2*q1*q2;
|
||||
|
||||
|
||||
SQ[0] = dvzCov*(SG[5] - 2*q0*q1)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyCov*(SG[5] + 2*q0*q1)*(SG[1] - SG[2] + SG[3] - SG[4]) + dvxCov*(SG[6] - 2*q0*q2)*(SG[7] + 2*q0*q3);
|
||||
SQ[1] = dvzCov*(SG[6] + 2*q0*q2)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxCov*(SG[6] - 2*q0*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvyCov*(SG[5] + 2*q0*q1)*(SG[7] - 2*q0*q3);
|
||||
SQ[2] = dvzCov*(SG[5] - 2*q0*q1)*(SG[6] + 2*q0*q2) - dvyCov*(SG[7] - 2*q0*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxCov*(SG[7] + 2*q0*q3)*(SG[1] + SG[2] - SG[3] - SG[4]);
|
||||
|
@ -394,7 +397,7 @@ void CovariancePrediction()
|
|||
SQ[8] = (dayCov*q2*q3)/4 - (daxCov*q1*SG[0])/2 - (dazCov*q2*q3)/4;
|
||||
SQ[9] = sq(SG[0]);
|
||||
SQ[10] = sq(q1);
|
||||
|
||||
|
||||
SPP[0] = SF[12] + SF[13] - 2*dvx*q2;
|
||||
SPP[1] = 2*dvx*q0 - 2*dvy*q3 + 2*dvz*q2;
|
||||
SPP[2] = 2*dvx*q3 + 2*dvy*q0 - 2*dvz*q1;
|
||||
|
@ -403,7 +406,7 @@ void CovariancePrediction()
|
|||
SPP[5] = SF[9];
|
||||
SPP[6] = SF[7];
|
||||
SPP[7] = SF[8];
|
||||
|
||||
|
||||
nextP[0][0] = P[0][0] + P[1][0]*SF[6] + P[2][0]*SPP[7] + P[3][0]*SPP[6] + P[10][0]*SPP[5] + P[11][0]*SPP[4] + P[12][0]*SPP[3] + (daxCov*SQ[10])/4 + SF[6]*(P[0][1] + P[1][1]*SF[6] + P[2][1]*SPP[7] + P[3][1]*SPP[6] + P[10][1]*SPP[5] + P[11][1]*SPP[4] + P[12][1]*SPP[3]) + SPP[7]*(P[0][2] + P[1][2]*SF[6] + P[2][2]*SPP[7] + P[3][2]*SPP[6] + P[10][2]*SPP[5] + P[11][2]*SPP[4] + P[12][2]*SPP[3]) + SPP[6]*(P[0][3] + P[1][3]*SF[6] + P[2][3]*SPP[7] + P[3][3]*SPP[6] + P[10][3]*SPP[5] + P[11][3]*SPP[4] + P[12][3]*SPP[3]) + SPP[5]*(P[0][10] + P[1][10]*SF[6] + P[2][10]*SPP[7] + P[3][10]*SPP[6] + P[10][10]*SPP[5] + P[11][10]*SPP[4] + P[12][10]*SPP[3]) + SPP[4]*(P[0][11] + P[1][11]*SF[6] + P[2][11]*SPP[7] + P[3][11]*SPP[6] + P[10][11]*SPP[5] + P[11][11]*SPP[4] + P[12][11]*SPP[3]) + SPP[3]*(P[0][12] + P[1][12]*SF[6] + P[2][12]*SPP[7] + P[3][12]*SPP[6] + P[10][12]*SPP[5] + P[11][12]*SPP[4] + P[12][12]*SPP[3]) + (dayCov*sq(q2))/4 + (dazCov*sq(q3))/4;
|
||||
nextP[0][1] = P[0][1] + SQ[8] + P[1][1]*SF[6] + P[2][1]*SPP[7] + P[3][1]*SPP[6] + P[10][1]*SPP[5] + P[11][1]*SPP[4] + P[12][1]*SPP[3] + SF[5]*(P[0][0] + P[1][0]*SF[6] + P[2][0]*SPP[7] + P[3][0]*SPP[6] + P[10][0]*SPP[5] + P[11][0]*SPP[4] + P[12][0]*SPP[3]) + SF[4]*(P[0][2] + P[1][2]*SF[6] + P[2][2]*SPP[7] + P[3][2]*SPP[6] + P[10][2]*SPP[5] + P[11][2]*SPP[4] + P[12][2]*SPP[3]) + SPP[7]*(P[0][3] + P[1][3]*SF[6] + P[2][3]*SPP[7] + P[3][3]*SPP[6] + P[10][3]*SPP[5] + P[11][3]*SPP[4] + P[12][3]*SPP[3]) + SPP[3]*(P[0][11] + P[1][11]*SF[6] + P[2][11]*SPP[7] + P[3][11]*SPP[6] + P[10][11]*SPP[5] + P[11][11]*SPP[4] + P[12][11]*SPP[3]) - SPP[4]*(P[0][12] + P[1][12]*SF[6] + P[2][12]*SPP[7] + P[3][12]*SPP[6] + P[10][12]*SPP[5] + P[11][12]*SPP[4] + P[12][12]*SPP[3]) - (q0*(P[0][10] + P[1][10]*SF[6] + P[2][10]*SPP[7] + P[3][10]*SPP[6] + P[10][10]*SPP[5] + P[11][10]*SPP[4] + P[12][10]*SPP[3]))/2;
|
||||
nextP[0][2] = P[0][2] + SQ[7] + P[1][2]*SF[6] + P[2][2]*SPP[7] + P[3][2]*SPP[6] + P[10][2]*SPP[5] + P[11][2]*SPP[4] + P[12][2]*SPP[3] + SF[3]*(P[0][0] + P[1][0]*SF[6] + P[2][0]*SPP[7] + P[3][0]*SPP[6] + P[10][0]*SPP[5] + P[11][0]*SPP[4] + P[12][0]*SPP[3]) + SF[5]*(P[0][3] + P[1][3]*SF[6] + P[2][3]*SPP[7] + P[3][3]*SPP[6] + P[10][3]*SPP[5] + P[11][3]*SPP[4] + P[12][3]*SPP[3]) + SPP[6]*(P[0][1] + P[1][1]*SF[6] + P[2][1]*SPP[7] + P[3][1]*SPP[6] + P[10][1]*SPP[5] + P[11][1]*SPP[4] + P[12][1]*SPP[3]) - SPP[3]*(P[0][10] + P[1][10]*SF[6] + P[2][10]*SPP[7] + P[3][10]*SPP[6] + P[10][10]*SPP[5] + P[11][10]*SPP[4] + P[12][10]*SPP[3]) + SPP[5]*(P[0][12] + P[1][12]*SF[6] + P[2][12]*SPP[7] + P[3][12]*SPP[6] + P[10][12]*SPP[5] + P[11][12]*SPP[4] + P[12][12]*SPP[3]) - (q0*(P[0][11] + P[1][11]*SF[6] + P[2][11]*SPP[7] + P[3][11]*SPP[6] + P[10][11]*SPP[5] + P[11][11]*SPP[4] + P[12][11]*SPP[3]))/2;
|
||||
|
@ -845,12 +848,12 @@ void CovariancePrediction()
|
|||
nextP[20][18] = P[20][18];
|
||||
nextP[20][19] = P[20][19];
|
||||
nextP[20][20] = P[20][20];
|
||||
|
||||
for (uint8_t i=0; i< n_states; i++)
|
||||
|
||||
for (uint8_t i=0; i<= 20; i++)
|
||||
{
|
||||
nextP[i][i] = nextP[i][i] + processNoise[i];
|
||||
}
|
||||
|
||||
|
||||
// If on ground or no magnetometer fitted, inhibit magnetometer bias updates by
|
||||
// setting the coresponding covariance terms to zero.
|
||||
if (onGround || !useCompass)
|
||||
|
@ -858,7 +861,7 @@ void CovariancePrediction()
|
|||
zeroRows(nextP,15,20);
|
||||
zeroCols(nextP,15,20);
|
||||
}
|
||||
|
||||
|
||||
// If on ground or not using airspeed sensing, inhibit wind velocity
|
||||
// covariance growth.
|
||||
if (onGround || !useAirspeed)
|
||||
|
@ -866,7 +869,7 @@ void CovariancePrediction()
|
|||
zeroRows(nextP,13,14);
|
||||
zeroCols(nextP,13,14);
|
||||
}
|
||||
|
||||
|
||||
// If the total position variance exceds 1E6 (1000m), then stop covariance
|
||||
// growth by setting the predicted to the previous values
|
||||
// This prevent an ill conditioned matrix from occurring for long periods
|
||||
|
@ -882,11 +885,11 @@ void CovariancePrediction()
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Force symmetry on the covariance matrix to prevent ill-conditioning
|
||||
// of the matrix which would cause the filter to blow-up
|
||||
for (uint8_t i=0; i< n_states; i++) P[i][i] = nextP[i][i];
|
||||
for (uint8_t i=1; i< n_states; i++)
|
||||
for (uint8_t i=0; i<=20; i++) P[i][i] = nextP[i][i];
|
||||
for (uint8_t i=1; i<=20; i++)
|
||||
{
|
||||
for (uint8_t j=0; j<=i-1; j++)
|
||||
{
|
||||
|
@ -894,14 +897,14 @@ void CovariancePrediction()
|
|||
P[j][i] = P[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
}
|
||||
|
||||
void FuseVelposNED()
|
||||
{
|
||||
|
||||
// declare variables used by fault isolation logic
|
||||
|
||||
// declare variables used by fault isolation logic
|
||||
uint32_t gpsRetryTime = 30000; // time in msec before GPS fusion will be retried following innovation consistency failure
|
||||
uint32_t gpsRetryTimeNoTAS = 5000; // retry time if no TAS measurement available
|
||||
uint32_t hgtRetryTime = 5000; // height measurement retry time
|
||||
|
@ -915,43 +918,43 @@ void FuseVelposNED()
|
|||
bool velTimeout;
|
||||
bool posTimeout;
|
||||
bool hgtTimeout;
|
||||
|
||||
// declare variables used to check measurement errors
|
||||
|
||||
// declare variables used to check measurement errors
|
||||
float velInnov[3] = {0.0,0.0,0.0};
|
||||
float posInnov[2] = {0.0,0.0};
|
||||
float hgtInnov = 0.0;
|
||||
|
||||
// declare variables used to control access to arrays
|
||||
|
||||
// declare variables used to control access to arrays
|
||||
bool fuseData[6] = {false,false,false,false,false,false};
|
||||
uint8_t stateIndex;
|
||||
unsigned obsIndex;
|
||||
unsigned indexLimit;
|
||||
|
||||
// declare variables used by state and covariance update calculations
|
||||
uint8_t obsIndex;
|
||||
uint8_t indexLimit;
|
||||
|
||||
// declare variables used by state and covariance update calculations
|
||||
float velErr;
|
||||
float posErr;
|
||||
float R_OBS[6];
|
||||
float observation[6];
|
||||
float SK;
|
||||
float quatMag;
|
||||
|
||||
// Perform sequential fusion of GPS measurements. This assumes that the
|
||||
// errors in the different velocity and position components are
|
||||
// uncorrelated which is not true, however in the absence of covariance
|
||||
// data from the GPS receiver it is the only assumption we can make
|
||||
// so we might as well take advantage of the computational efficiencies
|
||||
// associated with sequential fusion
|
||||
|
||||
// Perform sequential fusion of GPS measurements. This assumes that the
|
||||
// errors in the different velocity and position components are
|
||||
// uncorrelated which is not true, however in the absence of covariance
|
||||
// data from the GPS receiver it is the only assumption we can make
|
||||
// so we might as well take advantage of the computational efficiencies
|
||||
// associated with sequential fusion
|
||||
if (fuseVelData || fusePosData || fuseHgtData)
|
||||
{
|
||||
// set the GPS data timeout depending on whether airspeed data is present
|
||||
if (useAirspeed) horizRetryTime = gpsRetryTime;
|
||||
else horizRetryTime = gpsRetryTimeNoTAS;
|
||||
|
||||
|
||||
// Form the observation vector
|
||||
for (uint8_t i=0; i<=2; i++) observation[i] = velNED[i];
|
||||
for (uint8_t i=3; i<=4; i++) observation[i] = posNE[i-3];
|
||||
observation[5] = -(hgtMea);
|
||||
|
||||
|
||||
// Estimate the GPS Velocity, GPS horiz position and height measurement variances.
|
||||
velErr = 0.2*accNavMag; // additional error in GPS velocities caused by manoeuvring
|
||||
posErr = 0.2*accNavMag; // additional error in GPS position caused by manoeuvring
|
||||
|
@ -961,7 +964,7 @@ void FuseVelposNED()
|
|||
R_OBS[3] = R_OBS[2];
|
||||
R_OBS[4] = 4.0f + sq(posErr);
|
||||
R_OBS[5] = 4.0f;
|
||||
|
||||
|
||||
// Set innovation variances to zero default
|
||||
for (uint8_t i = 0; i<=5; i++)
|
||||
{
|
||||
|
@ -1069,7 +1072,7 @@ void FuseVelposNED()
|
|||
stateIndex = 4 + obsIndex;
|
||||
// Calculate the measurement innovation, using states from a
|
||||
// different time coordinate if fusing height data
|
||||
if (obsIndex <= 2)
|
||||
if (obsIndex >= 0 && obsIndex <= 2)
|
||||
{
|
||||
innovVelPos[obsIndex] = statesAtVelTime[stateIndex] - observation[obsIndex];
|
||||
}
|
||||
|
@ -1126,7 +1129,7 @@ void FuseVelposNED()
|
|||
|
||||
void FuseMagnetometer()
|
||||
{
|
||||
|
||||
|
||||
static float q0 = 1.0;
|
||||
static float q1 = 0.0;
|
||||
static float q2 = 0.0;
|
||||
|
@ -1137,7 +1140,7 @@ void FuseMagnetometer()
|
|||
static float magXbias = 0.0;
|
||||
static float magYbias = 0.0;
|
||||
static float magZbias = 0.0;
|
||||
static unsigned obsIndex;
|
||||
static uint8_t obsIndex;
|
||||
uint8_t indexLimit;
|
||||
float DCM[3][3] =
|
||||
{
|
||||
|
@ -1148,17 +1151,17 @@ void FuseMagnetometer()
|
|||
static float MagPred[3] = {0.0,0.0,0.0};
|
||||
static float R_MAG;
|
||||
static float SH_MAG[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
|
||||
float H_MAG[n_states];
|
||||
float H_MAG[21];
|
||||
float SK_MX[6];
|
||||
float SK_MY[5];
|
||||
float SK_MZ[6];
|
||||
|
||||
// Perform sequential fusion of Magnetometer measurements.
|
||||
// This assumes that the errors in the different components are
|
||||
// uncorrelated which is not true, however in the absence of covariance
|
||||
// data fit is the only assumption we can make
|
||||
// so we might as well take advantage of the computational efficiencies
|
||||
// associated with sequential fusion
|
||||
|
||||
// Perform sequential fusion of Magnetometer measurements.
|
||||
// This assumes that the errors in the different components are
|
||||
// uncorrelated which is not true, however in the absence of covariance
|
||||
// data fit is the only assumption we can make
|
||||
// so we might as well take advantage of the computational efficiencies
|
||||
// associated with sequential fusion
|
||||
if (useCompass && (fuseMagData || obsIndex == 1 || obsIndex == 2))
|
||||
{
|
||||
// Limit range of states modified when on ground
|
||||
|
@ -1170,10 +1173,10 @@ void FuseMagnetometer()
|
|||
{
|
||||
indexLimit = 12;
|
||||
}
|
||||
|
||||
|
||||
// Sequential fusion of XYZ components to spread processing load across
|
||||
// three prediction time steps.
|
||||
|
||||
|
||||
// Calculate observation jacobians and Kalman gains
|
||||
if (fuseMagData)
|
||||
{
|
||||
|
@ -1188,7 +1191,7 @@ void FuseMagnetometer()
|
|||
magXbias = statesAtMagMeasTime[18];
|
||||
magYbias = statesAtMagMeasTime[19];
|
||||
magZbias = statesAtMagMeasTime[20];
|
||||
|
||||
|
||||
// rotate predicted earth components into body axes and calculate
|
||||
// predicted measurments
|
||||
DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3;
|
||||
|
@ -1203,10 +1206,10 @@ void FuseMagnetometer()
|
|||
MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias;
|
||||
MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias;
|
||||
MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias;
|
||||
|
||||
|
||||
// scale magnetometer observation error with total angular rate
|
||||
R_MAG = 0.0025f + sq(0.05f*dAngIMU.length()/dtIMU);
|
||||
|
||||
|
||||
// Calculate observation jacobians
|
||||
SH_MAG[0] = 2*magD*q3 + 2*magE*q2 + 2*magN*q1;
|
||||
SH_MAG[1] = 2*magD*q0 - 2*magE*q1 + 2*magN*q2;
|
||||
|
@ -1226,7 +1229,7 @@ void FuseMagnetometer()
|
|||
H_MAG[16] = 2*q0*q3 + 2*q1*q2;
|
||||
H_MAG[17] = 2*q1*q3 - 2*q0*q2;
|
||||
H_MAG[18] = 1;
|
||||
|
||||
|
||||
// Calculate Kalman gain
|
||||
SK_MX[0] = 1/(P[18][18] + R_MAG + P[1][18]*SH_MAG[0] + P[3][18]*SH_MAG[2] - P[15][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) - (2*magD*q0 - 2*magE*q1 + 2*magN*q2)*(P[18][2] + P[1][2]*SH_MAG[0] + P[3][2]*SH_MAG[2] - P[15][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][2]*(2*q0*q3 + 2*q1*q2) - P[17][2]*(2*q0*q2 - 2*q1*q3) - P[2][2]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[18][0] + P[1][0]*SH_MAG[0] + P[3][0]*SH_MAG[2] - P[15][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][0]*(2*q0*q3 + 2*q1*q2) - P[17][0]*(2*q0*q2 - 2*q1*q3) - P[2][0]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[18][1] + P[1][1]*SH_MAG[0] + P[3][1]*SH_MAG[2] - P[15][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][1]*(2*q0*q3 + 2*q1*q2) - P[17][1]*(2*q0*q2 - 2*q1*q3) - P[2][1]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[2]*(P[18][3] + P[1][3]*SH_MAG[0] + P[3][3]*SH_MAG[2] - P[15][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][3]*(2*q0*q3 + 2*q1*q2) - P[17][3]*(2*q0*q2 - 2*q1*q3) - P[2][3]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[18][15] + P[1][15]*SH_MAG[0] + P[3][15]*SH_MAG[2] - P[15][15]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][15]*(2*q0*q3 + 2*q1*q2) - P[17][15]*(2*q0*q2 - 2*q1*q3) - P[2][15]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][15]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[16][18]*(2*q0*q3 + 2*q1*q2) - P[17][18]*(2*q0*q2 - 2*q1*q3) - P[2][18]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + (2*q0*q3 + 2*q1*q2)*(P[18][16] + P[1][16]*SH_MAG[0] + P[3][16]*SH_MAG[2] - P[15][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][16]*(2*q0*q3 + 2*q1*q2) - P[17][16]*(2*q0*q2 - 2*q1*q3) - P[2][16]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q2 - 2*q1*q3)*(P[18][17] + P[1][17]*SH_MAG[0] + P[3][17]*SH_MAG[2] - P[15][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][17]*(2*q0*q3 + 2*q1*q2) - P[17][17]*(2*q0*q2 - 2*q1*q3) - P[2][17]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
|
||||
SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6];
|
||||
|
@ -1257,7 +1260,7 @@ void FuseMagnetometer()
|
|||
Kfusion[20] = SK_MX[0]*(P[20][18] + P[20][1]*SH_MAG[0] + P[20][3]*SH_MAG[2] + P[20][0]*SK_MX[3] - P[20][2]*SK_MX[2] - P[20][15]*SK_MX[1] + P[20][16]*SK_MX[5] - P[20][17]*SK_MX[4]);
|
||||
varInnovMag[0] = 1.0f/SK_MX[0];
|
||||
innovMag[0] = MagPred[0] - magData.x;
|
||||
|
||||
|
||||
// reset the observation index to 0 (we start by fusing the X
|
||||
// measurement)
|
||||
obsIndex = 0;
|
||||
|
@ -1274,7 +1277,7 @@ void FuseMagnetometer()
|
|||
H_MAG[16] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6];
|
||||
H_MAG[17] = 2*q0*q1 + 2*q2*q3;
|
||||
H_MAG[19] = 1;
|
||||
|
||||
|
||||
// Calculate Kalman gain
|
||||
SK_MY[0] = 1/(P[19][19] + R_MAG + P[0][19]*SH_MAG[2] + P[1][19]*SH_MAG[1] + P[2][19]*SH_MAG[0] - P[16][19]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2*q0*q3 - 2*q1*q2)*(P[19][15] + P[0][15]*SH_MAG[2] + P[1][15]*SH_MAG[1] + P[2][15]*SH_MAG[0] - P[16][15]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][15]*(2*q0*q3 - 2*q1*q2) + P[17][15]*(2*q0*q1 + 2*q2*q3) - P[3][15]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (2*q0*q1 + 2*q2*q3)*(P[19][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[16][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][17]*(2*q0*q3 - 2*q1*q2) + P[17][17]*(2*q0*q1 + 2*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[19][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[16][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][3]*(2*q0*q3 - 2*q1*q2) + P[17][3]*(2*q0*q1 + 2*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[15][19]*(2*q0*q3 - 2*q1*q2) + P[17][19]*(2*q0*q1 + 2*q2*q3) + SH_MAG[2]*(P[19][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[16][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][0]*(2*q0*q3 - 2*q1*q2) + P[17][0]*(2*q0*q1 + 2*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[19][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[16][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][1]*(2*q0*q3 - 2*q1*q2) + P[17][1]*(2*q0*q1 + 2*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[19][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[16][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][2]*(2*q0*q3 - 2*q1*q2) + P[17][2]*(2*q0*q1 + 2*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[16][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][16]*(2*q0*q3 - 2*q1*q2) + P[17][16]*(2*q0*q1 + 2*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[3][19]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
|
||||
SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6];
|
||||
|
@ -1317,7 +1320,7 @@ void FuseMagnetometer()
|
|||
H_MAG[16] = 2*q2*q3 - 2*q0*q1;
|
||||
H_MAG[17] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
|
||||
H_MAG[20] = 1;
|
||||
|
||||
|
||||
// Calculate Kalman gain
|
||||
SK_MZ[0] = 1/(P[20][20] + R_MAG + P[0][20]*SH_MAG[1] + P[3][20]*SH_MAG[0] + P[17][20]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) - (2*magD*q1 + 2*magE*q0 - 2*magN*q3)*(P[20][1] + P[0][1]*SH_MAG[1] + P[3][1]*SH_MAG[0] + P[17][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][1]*(2*q0*q2 + 2*q1*q3) - P[16][1]*(2*q0*q1 - 2*q2*q3) - P[1][1]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[20][2] + P[0][2]*SH_MAG[1] + P[3][2]*SH_MAG[0] + P[17][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][2]*(2*q0*q2 + 2*q1*q3) - P[16][2]*(2*q0*q1 - 2*q2*q3) - P[1][2]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[20][0] + P[0][0]*SH_MAG[1] + P[3][0]*SH_MAG[0] + P[17][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][0]*(2*q0*q2 + 2*q1*q3) - P[16][0]*(2*q0*q1 - 2*q2*q3) - P[1][0]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[20][3] + P[0][3]*SH_MAG[1] + P[3][3]*SH_MAG[0] + P[17][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][3]*(2*q0*q2 + 2*q1*q3) - P[16][3]*(2*q0*q1 - 2*q2*q3) - P[1][3]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[1] + P[3][17]*SH_MAG[0] + P[17][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][17]*(2*q0*q2 + 2*q1*q3) - P[16][17]*(2*q0*q1 - 2*q2*q3) - P[1][17]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[15][20]*(2*q0*q2 + 2*q1*q3) - P[16][20]*(2*q0*q1 - 2*q2*q3) - P[1][20]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + (2*q0*q2 + 2*q1*q3)*(P[20][15] + P[0][15]*SH_MAG[1] + P[3][15]*SH_MAG[0] + P[17][15]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][15]*(2*q0*q2 + 2*q1*q3) - P[16][15]*(2*q0*q1 - 2*q2*q3) - P[1][15]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][15]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q1 - 2*q2*q3)*(P[20][16] + P[0][16]*SH_MAG[1] + P[3][16]*SH_MAG[0] + P[17][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][16]*(2*q0*q2 + 2*q1*q3) - P[16][16]*(2*q0*q1 - 2*q2*q3) - P[1][16]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[2][20]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2));
|
||||
SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6];
|
||||
|
@ -1348,9 +1351,9 @@ void FuseMagnetometer()
|
|||
Kfusion[20] = SK_MZ[0]*(P[20][20] + P[20][0]*SH_MAG[1] + P[20][3]*SH_MAG[0] - P[20][1]*SK_MZ[2] + P[20][2]*SK_MZ[3] + P[20][17]*SK_MZ[1] + P[20][15]*SK_MZ[5] - P[20][16]*SK_MZ[4]);
|
||||
varInnovMag[2] = 1.0f/SK_MZ[0];
|
||||
innovMag[2] = MagPred[2] - magData.z;
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Check the innovation for consistency and don't fuse if > 5Sigma
|
||||
if ((innovMag[obsIndex]*innovMag[obsIndex]/varInnovMag[obsIndex]) < 25.0)
|
||||
{
|
||||
|
@ -1434,18 +1437,18 @@ void FuseAirspeed()
|
|||
const float R_TAS = 2.0f;
|
||||
float SH_TAS[3];
|
||||
float SK_TAS;
|
||||
float H_TAS[n_states];
|
||||
float Kfusion[n_states];
|
||||
float H_TAS[21];
|
||||
float Kfusion[21];
|
||||
float VtasPred;
|
||||
float quatMag;
|
||||
|
||||
|
||||
// Copy required states to local variable names
|
||||
vn = statesAtVtasMeasTime[4];
|
||||
ve = statesAtVtasMeasTime[5];
|
||||
vd = statesAtVtasMeasTime[6];
|
||||
vwn = statesAtVtasMeasTime[13];
|
||||
vwe = statesAtVtasMeasTime[14];
|
||||
|
||||
|
||||
// Need to check that it is flying before fusing airspeed data
|
||||
// Calculate the predicted airspeed
|
||||
VtasPred = sqrt((ve - vwe)*(ve - vwe) + (vn - vwn)*(vn - vwn) + vd*vd);
|
||||
|
@ -1462,7 +1465,7 @@ void FuseAirspeed()
|
|||
H_TAS[6] = vd*SH_TAS[0];
|
||||
H_TAS[13] = -SH_TAS[2];
|
||||
H_TAS[14] = -SH_TAS[1];
|
||||
|
||||
|
||||
// Calculate Kalman gains
|
||||
SK_TAS = 1.0f/(R_TAS + SH_TAS[2]*(P[4][4]*SH_TAS[2] + P[5][4]*SH_TAS[1] - P[13][4]*SH_TAS[2] - P[14][4]*SH_TAS[1] + P[6][4]*vd*SH_TAS[0]) + SH_TAS[1]*(P[4][5]*SH_TAS[2] + P[5][5]*SH_TAS[1] - P[13][5]*SH_TAS[2] - P[14][5]*SH_TAS[1] + P[6][5]*vd*SH_TAS[0]) - SH_TAS[2]*(P[4][13]*SH_TAS[2] + P[5][13]*SH_TAS[1] - P[13][13]*SH_TAS[2] - P[14][13]*SH_TAS[1] + P[6][13]*vd*SH_TAS[0]) - SH_TAS[1]*(P[4][14]*SH_TAS[2] + P[5][14]*SH_TAS[1] - P[13][14]*SH_TAS[2] - P[14][14]*SH_TAS[1] + P[6][14]*vd*SH_TAS[0]) + vd*SH_TAS[0]*(P[4][6]*SH_TAS[2] + P[5][6]*SH_TAS[1] - P[13][6]*SH_TAS[2] - P[14][6]*SH_TAS[1] + P[6][6]*vd*SH_TAS[0]));
|
||||
Kfusion[0] = SK_TAS*(P[0][4]*SH_TAS[2] - P[0][13]*SH_TAS[2] + P[0][5]*SH_TAS[1] - P[0][14]*SH_TAS[1] + P[0][6]*vd*SH_TAS[0]);
|
||||
|
@ -1487,7 +1490,7 @@ void FuseAirspeed()
|
|||
Kfusion[19] = SK_TAS*(P[19][4]*SH_TAS[2] - P[19][13]*SH_TAS[2] + P[19][5]*SH_TAS[1] - P[19][14]*SH_TAS[1] + P[19][6]*vd*SH_TAS[0]);
|
||||
Kfusion[20] = SK_TAS*(P[20][4]*SH_TAS[2] - P[20][13]*SH_TAS[2] + P[20][5]*SH_TAS[1] - P[20][14]*SH_TAS[1] + P[20][6]*vd*SH_TAS[0]);
|
||||
varInnovVtas = 1.0f/SK_TAS;
|
||||
|
||||
|
||||
// Calculate the measurement innovation
|
||||
innovVtas = VtasPred - VtasMeas;
|
||||
// Check the innovation for consistency and don't fuse if > 5Sigma
|
||||
|
@ -1550,6 +1553,7 @@ void FuseAirspeed()
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
void zeroRows(float covMat[n_states][n_states], uint8_t first, uint8_t last)
|
||||
{
|
||||
uint8_t row;
|
||||
|
@ -1598,7 +1602,7 @@ void RecallStates(float statesForFusion[n_states], uint32_t msec)
|
|||
long int bestTimeDelta = 200;
|
||||
uint8_t storeIndex;
|
||||
uint8_t bestStoreIndex = 0;
|
||||
for (storeIndex=0; storeIndex < n_states; storeIndex++)
|
||||
for (storeIndex=0; storeIndex < data_buffer_size; storeIndex++)
|
||||
{
|
||||
timeDelta = msec - statetimeStamp[storeIndex];
|
||||
if (timeDelta < 0) timeDelta = -timeDelta;
|
||||
|
|
|
@ -117,6 +117,9 @@ extern float gpsLon;
|
|||
extern float gpsHgt;
|
||||
extern uint8_t GPSstatus;
|
||||
|
||||
// Baro input
|
||||
extern float baroHgt;
|
||||
|
||||
extern bool statesInitialised;
|
||||
|
||||
const float covTimeStepMax = 0.07f; // maximum time allowed between covariance predictions
|
||||
|
|
Loading…
Reference in New Issue