From a937e972b059bfc6f6ec99fd5bcf064d89d29acb Mon Sep 17 00:00:00 2001 From: Lorenz Meier Date: Fri, 31 Jan 2014 09:53:48 +0100 Subject: [PATCH] Updated to latest estimator version --- .../fw_att_pos_estimator/estimator.cpp | 218 +++++++++--------- src/modules/fw_att_pos_estimator/estimator.h | 3 + 2 files changed, 114 insertions(+), 107 deletions(-) diff --git a/src/modules/fw_att_pos_estimator/estimator.cpp b/src/modules/fw_att_pos_estimator/estimator.cpp index 388cea8646..c7c9b6476d 100644 --- a/src/modules/fw_att_pos_estimator/estimator.cpp +++ b/src/modules/fw_att_pos_estimator/estimator.cpp @@ -20,16 +20,9 @@ Vector3f dVelIMU; Vector3f dAngIMU; float dtIMU; // time lapsed since the last IMU measurement or covariance update (sec) float dt; // time lapsed since last covariance prediction -bool onGround = true; // boolean true when the flight vehicle is on the ground (not flying) -bool useAirspeed = true; // boolean true if airspeed data is being used -bool useCompass = true; // boolean true if magnetometer data is being used uint8_t fusionModeGPS = 0; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity float innovVelPos[6]; // innovation output float varInnovVelPos[6]; // innovation variance output -bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused -bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused -bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused -bool fuseMagData = false; // boolean true when magnetometer data is to be fused float velNED[3]; // North, East, Down velocity obs (m/s) float posNE[2]; // North, East position obs (m) @@ -45,7 +38,6 @@ Vector3f magData; // magnetometer flux radings in X,Y,Z body axes float statesAtMagMeasTime[n_states]; // filter satates at the effective measurement time float innovVtas; // innovation output float varInnovVtas; // innovation variance output -bool fuseVtasData = false; // boolean true when airspeed data is to be fused float VtasMeas; // true airspeed measurement (m/s) float statesAtVtasMeasTime[n_states]; // filter states at the effective measurement time float latRef; // WGS-84 latitude of reference point (rad) @@ -64,9 +56,20 @@ float gpsLon; float gpsHgt; uint8_t GPSstatus; +// Baro input +float baroHgt; bool statesInitialised = false; +bool fuseVelData = false; // this boolean causes the posNE and velNED obs to be fused +bool fusePosData = false; // this boolean causes the posNE and velNED obs to be fused +bool fuseHgtData = false; // this boolean causes the hgtMea obs to be fused +bool fuseMagData = false; // boolean true when magnetometer data is to be fused +bool fuseVtasData = false; // boolean true when airspeed data is to be fused + +bool onGround = true; // boolean true when the flight vehicle is on the ground (not flying) +bool useAirspeed = true; // boolean true if airspeed data is being used +bool useCompass = true; // boolean true if magnetometer data is being used float Vector3f::length(void) const { @@ -182,23 +185,23 @@ void UpdateStrapdownEquationsNED() float deltaQuat[4]; static float lastVelocity[3]; const Vector3f gravityNED = {0.0,0.0,GRAVITY_MSS}; - - // Remove sensor bias errors + +// Remove sensor bias errors correctedDelAng.x = dAngIMU.x - states[10]; correctedDelAng.y = dAngIMU.y - states[11]; correctedDelAng.z = dAngIMU.z - states[12]; dVelIMU.x = dVelIMU.x; dVelIMU.y = dVelIMU.y; dVelIMU.z = dVelIMU.z; - - // Save current measurements + +// Save current measurements prevDelAng = correctedDelAng; - - // Apply corrections for earths rotation rate and coning errors - // * and + operators have been overloaded + +// Apply corrections for earths rotation rate and coning errors +// * and + operators have been overloaded correctedDelAng = correctedDelAng - Tnb*earthRateNED*dtIMU + 8.333333333333333e-2f*(prevDelAng % correctedDelAng); - - // Convert the rotation vector to its equivalent quaternion + +// Convert the rotation vector to its equivalent quaternion rotationMag = correctedDelAng.length(); if (rotationMag < 1e-12f) { @@ -215,15 +218,15 @@ void UpdateStrapdownEquationsNED() deltaQuat[2] = correctedDelAng.y*rotScaler; deltaQuat[3] = correctedDelAng.z*rotScaler; } - - // Update the quaternions by rotating from the previous attitude through - // the delta angle rotation quaternion + +// Update the quaternions by rotating from the previous attitude through +// the delta angle rotation quaternion qUpdated[0] = states[0]*deltaQuat[0] - states[1]*deltaQuat[1] - states[2]*deltaQuat[2] - states[3]*deltaQuat[3]; qUpdated[1] = states[0]*deltaQuat[1] + states[1]*deltaQuat[0] + states[2]*deltaQuat[3] - states[3]*deltaQuat[2]; qUpdated[2] = states[0]*deltaQuat[2] + states[2]*deltaQuat[0] + states[3]*deltaQuat[1] - states[1]*deltaQuat[3]; qUpdated[3] = states[0]*deltaQuat[3] + states[3]*deltaQuat[0] + states[1]*deltaQuat[2] - states[2]*deltaQuat[1]; - - // Normalise the quaternions and update the quaternion states + +// Normalise the quaternions and update the quaternion states quatMag = sqrt(sq(qUpdated[0]) + sq(qUpdated[1]) + sq(qUpdated[2]) + sq(qUpdated[3])); if (quatMag > 1e-16f) { @@ -233,8 +236,8 @@ void UpdateStrapdownEquationsNED() states[2] = quatMagInv*qUpdated[2]; states[3] = quatMagInv*qUpdated[3]; } - - // Calculate the body to nav cosine matrix + +// Calculate the body to nav cosine matrix q00 = sq(states[0]); q11 = sq(states[1]); q22 = sq(states[2]); @@ -245,7 +248,7 @@ void UpdateStrapdownEquationsNED() q12 = states[1]*states[2]; q13 = states[1]*states[3]; q23 = states[2]*states[3]; - + Tbn.x.x = q00 + q11 - q22 - q33; Tbn.y.y = q00 - q11 + q22 - q33; Tbn.z.z = q00 - q11 - q22 + q33; @@ -255,35 +258,35 @@ void UpdateStrapdownEquationsNED() Tbn.y.z = 2*(q23 - q01); Tbn.z.x = 2*(q13 - q02); Tbn.z.y = 2*(q23 + q01); - + Tnb = Tbn.transpose(); - - // transform body delta velocities to delta velocities in the nav frame - // * and + operators have been overloaded + +// transform body delta velocities to delta velocities in the nav frame +// * and + operators have been overloaded //delVelNav = Tbn*dVelIMU + gravityNED*dtIMU; delVelNav.x = Tbn.x.x*dVelIMU.x + Tbn.x.y*dVelIMU.y + Tbn.x.z*dVelIMU.z + gravityNED.x*dtIMU; delVelNav.y = Tbn.y.x*dVelIMU.x + Tbn.y.y*dVelIMU.y + Tbn.y.z*dVelIMU.z + gravityNED.y*dtIMU; delVelNav.z = Tbn.z.x*dVelIMU.x + Tbn.z.y*dVelIMU.y + Tbn.z.z*dVelIMU.z + gravityNED.z*dtIMU; - - // calculate the magnitude of the nav acceleration (required for GPS - // variance estimation) + +// calculate the magnitude of the nav acceleration (required for GPS +// variance estimation) accNavMag = delVelNav.length()/dtIMU; - - // If calculating position save previous velocity + +// If calculating position save previous velocity lastVelocity[0] = states[4]; lastVelocity[1] = states[5]; lastVelocity[2] = states[6]; - - // Sum delta velocities to get velocity + +// Sum delta velocities to get velocity states[4] = states[4] + delVelNav.x; states[5] = states[5] + delVelNav.y; states[6] = states[6] + delVelNav.z; - - // If calculating postions, do a trapezoidal integration for position + +// If calculating postions, do a trapezoidal integration for position states[7] = states[7] + 0.5f*(states[4] + lastVelocity[0])*dtIMU; states[8] = states[8] + 0.5f*(states[5] + lastVelocity[1])*dtIMU; states[9] = states[9] + 0.5f*(states[6] + lastVelocity[2])*dtIMU; - + } void CovariancePrediction() @@ -313,15 +316,15 @@ void CovariancePrediction() float dax_b; float day_b; float daz_b; - + // arrays - float processNoise[n_states]; + float processNoise[21]; float SF[14]; float SG[8]; float SQ[11]; float SPP[13]; - float nextP[n_states][n_states]; - + float nextP[21][21]; + // calculate covariance prediction process noise const float yawVarScale = 1.0f; windVelSigma = dt*0.1f; @@ -335,7 +338,7 @@ void CovariancePrediction() for (uint8_t i=15; i<=17; i++) processNoise[i] = magEarthSigma; for (uint8_t i=18; i<=20; i++) processNoise[i] = magBodySigma; for (uint8_t i= 0; i<=20; i++) processNoise[i] = sq(processNoise[i]); - + // set variables used to calculate covariance growth dvx = summedDelVel.x; dvy = summedDelVel.y; @@ -357,7 +360,7 @@ void CovariancePrediction() dvxCov = sq(dt*0.5f); dvyCov = sq(dt*0.5f); dvzCov = sq(dt*0.5f); - + // Predicted covariance calculation SF[0] = 2*dvx*q1 + 2*dvy*q2 + 2*dvz*q3; SF[1] = 2*dvx*q3 + 2*dvy*q0 - 2*dvz*q1; @@ -373,7 +376,7 @@ void CovariancePrediction() SF[11] = q3/2; SF[12] = 2*dvz*q0; SF[13] = 2*dvy*q1; - + SG[0] = q0/2; SG[1] = sq(q3); SG[2] = sq(q2); @@ -382,7 +385,7 @@ void CovariancePrediction() SG[5] = 2*q2*q3; SG[6] = 2*q1*q3; SG[7] = 2*q1*q2; - + SQ[0] = dvzCov*(SG[5] - 2*q0*q1)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyCov*(SG[5] + 2*q0*q1)*(SG[1] - SG[2] + SG[3] - SG[4]) + dvxCov*(SG[6] - 2*q0*q2)*(SG[7] + 2*q0*q3); SQ[1] = dvzCov*(SG[6] + 2*q0*q2)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxCov*(SG[6] - 2*q0*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvyCov*(SG[5] + 2*q0*q1)*(SG[7] - 2*q0*q3); SQ[2] = dvzCov*(SG[5] - 2*q0*q1)*(SG[6] + 2*q0*q2) - dvyCov*(SG[7] - 2*q0*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxCov*(SG[7] + 2*q0*q3)*(SG[1] + SG[2] - SG[3] - SG[4]); @@ -394,7 +397,7 @@ void CovariancePrediction() SQ[8] = (dayCov*q2*q3)/4 - (daxCov*q1*SG[0])/2 - (dazCov*q2*q3)/4; SQ[9] = sq(SG[0]); SQ[10] = sq(q1); - + SPP[0] = SF[12] + SF[13] - 2*dvx*q2; SPP[1] = 2*dvx*q0 - 2*dvy*q3 + 2*dvz*q2; SPP[2] = 2*dvx*q3 + 2*dvy*q0 - 2*dvz*q1; @@ -403,7 +406,7 @@ void CovariancePrediction() SPP[5] = SF[9]; SPP[6] = SF[7]; SPP[7] = SF[8]; - + nextP[0][0] = P[0][0] + P[1][0]*SF[6] + P[2][0]*SPP[7] + P[3][0]*SPP[6] + P[10][0]*SPP[5] + P[11][0]*SPP[4] + P[12][0]*SPP[3] + (daxCov*SQ[10])/4 + SF[6]*(P[0][1] + P[1][1]*SF[6] + P[2][1]*SPP[7] + P[3][1]*SPP[6] + P[10][1]*SPP[5] + P[11][1]*SPP[4] + P[12][1]*SPP[3]) + SPP[7]*(P[0][2] + P[1][2]*SF[6] + P[2][2]*SPP[7] + P[3][2]*SPP[6] + P[10][2]*SPP[5] + P[11][2]*SPP[4] + P[12][2]*SPP[3]) + SPP[6]*(P[0][3] + P[1][3]*SF[6] + P[2][3]*SPP[7] + P[3][3]*SPP[6] + P[10][3]*SPP[5] + P[11][3]*SPP[4] + P[12][3]*SPP[3]) + SPP[5]*(P[0][10] + P[1][10]*SF[6] + P[2][10]*SPP[7] + P[3][10]*SPP[6] + P[10][10]*SPP[5] + P[11][10]*SPP[4] + P[12][10]*SPP[3]) + SPP[4]*(P[0][11] + P[1][11]*SF[6] + P[2][11]*SPP[7] + P[3][11]*SPP[6] + P[10][11]*SPP[5] + P[11][11]*SPP[4] + P[12][11]*SPP[3]) + SPP[3]*(P[0][12] + P[1][12]*SF[6] + P[2][12]*SPP[7] + P[3][12]*SPP[6] + P[10][12]*SPP[5] + P[11][12]*SPP[4] + P[12][12]*SPP[3]) + (dayCov*sq(q2))/4 + (dazCov*sq(q3))/4; nextP[0][1] = P[0][1] + SQ[8] + P[1][1]*SF[6] + P[2][1]*SPP[7] + P[3][1]*SPP[6] + P[10][1]*SPP[5] + P[11][1]*SPP[4] + P[12][1]*SPP[3] + SF[5]*(P[0][0] + P[1][0]*SF[6] + P[2][0]*SPP[7] + P[3][0]*SPP[6] + P[10][0]*SPP[5] + P[11][0]*SPP[4] + P[12][0]*SPP[3]) + SF[4]*(P[0][2] + P[1][2]*SF[6] + P[2][2]*SPP[7] + P[3][2]*SPP[6] + P[10][2]*SPP[5] + P[11][2]*SPP[4] + P[12][2]*SPP[3]) + SPP[7]*(P[0][3] + P[1][3]*SF[6] + P[2][3]*SPP[7] + P[3][3]*SPP[6] + P[10][3]*SPP[5] + P[11][3]*SPP[4] + P[12][3]*SPP[3]) + SPP[3]*(P[0][11] + P[1][11]*SF[6] + P[2][11]*SPP[7] + P[3][11]*SPP[6] + P[10][11]*SPP[5] + P[11][11]*SPP[4] + P[12][11]*SPP[3]) - SPP[4]*(P[0][12] + P[1][12]*SF[6] + P[2][12]*SPP[7] + P[3][12]*SPP[6] + P[10][12]*SPP[5] + P[11][12]*SPP[4] + P[12][12]*SPP[3]) - (q0*(P[0][10] + P[1][10]*SF[6] + P[2][10]*SPP[7] + P[3][10]*SPP[6] + P[10][10]*SPP[5] + P[11][10]*SPP[4] + P[12][10]*SPP[3]))/2; nextP[0][2] = P[0][2] + SQ[7] + P[1][2]*SF[6] + P[2][2]*SPP[7] + P[3][2]*SPP[6] + P[10][2]*SPP[5] + P[11][2]*SPP[4] + P[12][2]*SPP[3] + SF[3]*(P[0][0] + P[1][0]*SF[6] + P[2][0]*SPP[7] + P[3][0]*SPP[6] + P[10][0]*SPP[5] + P[11][0]*SPP[4] + P[12][0]*SPP[3]) + SF[5]*(P[0][3] + P[1][3]*SF[6] + P[2][3]*SPP[7] + P[3][3]*SPP[6] + P[10][3]*SPP[5] + P[11][3]*SPP[4] + P[12][3]*SPP[3]) + SPP[6]*(P[0][1] + P[1][1]*SF[6] + P[2][1]*SPP[7] + P[3][1]*SPP[6] + P[10][1]*SPP[5] + P[11][1]*SPP[4] + P[12][1]*SPP[3]) - SPP[3]*(P[0][10] + P[1][10]*SF[6] + P[2][10]*SPP[7] + P[3][10]*SPP[6] + P[10][10]*SPP[5] + P[11][10]*SPP[4] + P[12][10]*SPP[3]) + SPP[5]*(P[0][12] + P[1][12]*SF[6] + P[2][12]*SPP[7] + P[3][12]*SPP[6] + P[10][12]*SPP[5] + P[11][12]*SPP[4] + P[12][12]*SPP[3]) - (q0*(P[0][11] + P[1][11]*SF[6] + P[2][11]*SPP[7] + P[3][11]*SPP[6] + P[10][11]*SPP[5] + P[11][11]*SPP[4] + P[12][11]*SPP[3]))/2; @@ -845,12 +848,12 @@ void CovariancePrediction() nextP[20][18] = P[20][18]; nextP[20][19] = P[20][19]; nextP[20][20] = P[20][20]; - - for (uint8_t i=0; i< n_states; i++) + + for (uint8_t i=0; i<= 20; i++) { nextP[i][i] = nextP[i][i] + processNoise[i]; } - + // If on ground or no magnetometer fitted, inhibit magnetometer bias updates by // setting the coresponding covariance terms to zero. if (onGround || !useCompass) @@ -858,7 +861,7 @@ void CovariancePrediction() zeroRows(nextP,15,20); zeroCols(nextP,15,20); } - + // If on ground or not using airspeed sensing, inhibit wind velocity // covariance growth. if (onGround || !useAirspeed) @@ -866,7 +869,7 @@ void CovariancePrediction() zeroRows(nextP,13,14); zeroCols(nextP,13,14); } - + // If the total position variance exceds 1E6 (1000m), then stop covariance // growth by setting the predicted to the previous values // This prevent an ill conditioned matrix from occurring for long periods @@ -882,11 +885,11 @@ void CovariancePrediction() } } } - + // Force symmetry on the covariance matrix to prevent ill-conditioning // of the matrix which would cause the filter to blow-up - for (uint8_t i=0; i< n_states; i++) P[i][i] = nextP[i][i]; - for (uint8_t i=1; i< n_states; i++) + for (uint8_t i=0; i<=20; i++) P[i][i] = nextP[i][i]; + for (uint8_t i=1; i<=20; i++) { for (uint8_t j=0; j<=i-1; j++) { @@ -894,14 +897,14 @@ void CovariancePrediction() P[j][i] = P[i][j]; } } - + // } void FuseVelposNED() { - - // declare variables used by fault isolation logic + +// declare variables used by fault isolation logic uint32_t gpsRetryTime = 30000; // time in msec before GPS fusion will be retried following innovation consistency failure uint32_t gpsRetryTimeNoTAS = 5000; // retry time if no TAS measurement available uint32_t hgtRetryTime = 5000; // height measurement retry time @@ -915,43 +918,43 @@ void FuseVelposNED() bool velTimeout; bool posTimeout; bool hgtTimeout; - - // declare variables used to check measurement errors + +// declare variables used to check measurement errors float velInnov[3] = {0.0,0.0,0.0}; float posInnov[2] = {0.0,0.0}; float hgtInnov = 0.0; - - // declare variables used to control access to arrays + +// declare variables used to control access to arrays bool fuseData[6] = {false,false,false,false,false,false}; uint8_t stateIndex; - unsigned obsIndex; - unsigned indexLimit; - - // declare variables used by state and covariance update calculations + uint8_t obsIndex; + uint8_t indexLimit; + +// declare variables used by state and covariance update calculations float velErr; float posErr; float R_OBS[6]; float observation[6]; float SK; float quatMag; - - // Perform sequential fusion of GPS measurements. This assumes that the - // errors in the different velocity and position components are - // uncorrelated which is not true, however in the absence of covariance - // data from the GPS receiver it is the only assumption we can make - // so we might as well take advantage of the computational efficiencies - // associated with sequential fusion + +// Perform sequential fusion of GPS measurements. This assumes that the +// errors in the different velocity and position components are +// uncorrelated which is not true, however in the absence of covariance +// data from the GPS receiver it is the only assumption we can make +// so we might as well take advantage of the computational efficiencies +// associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // set the GPS data timeout depending on whether airspeed data is present if (useAirspeed) horizRetryTime = gpsRetryTime; else horizRetryTime = gpsRetryTimeNoTAS; - + // Form the observation vector for (uint8_t i=0; i<=2; i++) observation[i] = velNED[i]; for (uint8_t i=3; i<=4; i++) observation[i] = posNE[i-3]; observation[5] = -(hgtMea); - + // Estimate the GPS Velocity, GPS horiz position and height measurement variances. velErr = 0.2*accNavMag; // additional error in GPS velocities caused by manoeuvring posErr = 0.2*accNavMag; // additional error in GPS position caused by manoeuvring @@ -961,7 +964,7 @@ void FuseVelposNED() R_OBS[3] = R_OBS[2]; R_OBS[4] = 4.0f + sq(posErr); R_OBS[5] = 4.0f; - + // Set innovation variances to zero default for (uint8_t i = 0; i<=5; i++) { @@ -1069,7 +1072,7 @@ void FuseVelposNED() stateIndex = 4 + obsIndex; // Calculate the measurement innovation, using states from a // different time coordinate if fusing height data - if (obsIndex <= 2) + if (obsIndex >= 0 && obsIndex <= 2) { innovVelPos[obsIndex] = statesAtVelTime[stateIndex] - observation[obsIndex]; } @@ -1126,7 +1129,7 @@ void FuseVelposNED() void FuseMagnetometer() { - + static float q0 = 1.0; static float q1 = 0.0; static float q2 = 0.0; @@ -1137,7 +1140,7 @@ void FuseMagnetometer() static float magXbias = 0.0; static float magYbias = 0.0; static float magZbias = 0.0; - static unsigned obsIndex; + static uint8_t obsIndex; uint8_t indexLimit; float DCM[3][3] = { @@ -1148,17 +1151,17 @@ void FuseMagnetometer() static float MagPred[3] = {0.0,0.0,0.0}; static float R_MAG; static float SH_MAG[9] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}; - float H_MAG[n_states]; + float H_MAG[21]; float SK_MX[6]; float SK_MY[5]; float SK_MZ[6]; - - // Perform sequential fusion of Magnetometer measurements. - // This assumes that the errors in the different components are - // uncorrelated which is not true, however in the absence of covariance - // data fit is the only assumption we can make - // so we might as well take advantage of the computational efficiencies - // associated with sequential fusion + +// Perform sequential fusion of Magnetometer measurements. +// This assumes that the errors in the different components are +// uncorrelated which is not true, however in the absence of covariance +// data fit is the only assumption we can make +// so we might as well take advantage of the computational efficiencies +// associated with sequential fusion if (useCompass && (fuseMagData || obsIndex == 1 || obsIndex == 2)) { // Limit range of states modified when on ground @@ -1170,10 +1173,10 @@ void FuseMagnetometer() { indexLimit = 12; } - + // Sequential fusion of XYZ components to spread processing load across // three prediction time steps. - + // Calculate observation jacobians and Kalman gains if (fuseMagData) { @@ -1188,7 +1191,7 @@ void FuseMagnetometer() magXbias = statesAtMagMeasTime[18]; magYbias = statesAtMagMeasTime[19]; magZbias = statesAtMagMeasTime[20]; - + // rotate predicted earth components into body axes and calculate // predicted measurments DCM[0][0] = q0*q0 + q1*q1 - q2*q2 - q3*q3; @@ -1203,10 +1206,10 @@ void FuseMagnetometer() MagPred[0] = DCM[0][0]*magN + DCM[0][1]*magE + DCM[0][2]*magD + magXbias; MagPred[1] = DCM[1][0]*magN + DCM[1][1]*magE + DCM[1][2]*magD + magYbias; MagPred[2] = DCM[2][0]*magN + DCM[2][1]*magE + DCM[2][2]*magD + magZbias; - + // scale magnetometer observation error with total angular rate R_MAG = 0.0025f + sq(0.05f*dAngIMU.length()/dtIMU); - + // Calculate observation jacobians SH_MAG[0] = 2*magD*q3 + 2*magE*q2 + 2*magN*q1; SH_MAG[1] = 2*magD*q0 - 2*magE*q1 + 2*magN*q2; @@ -1226,7 +1229,7 @@ void FuseMagnetometer() H_MAG[16] = 2*q0*q3 + 2*q1*q2; H_MAG[17] = 2*q1*q3 - 2*q0*q2; H_MAG[18] = 1; - + // Calculate Kalman gain SK_MX[0] = 1/(P[18][18] + R_MAG + P[1][18]*SH_MAG[0] + P[3][18]*SH_MAG[2] - P[15][18]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) - (2*magD*q0 - 2*magE*q1 + 2*magN*q2)*(P[18][2] + P[1][2]*SH_MAG[0] + P[3][2]*SH_MAG[2] - P[15][2]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][2]*(2*q0*q3 + 2*q1*q2) - P[17][2]*(2*q0*q2 - 2*q1*q3) - P[2][2]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[18][0] + P[1][0]*SH_MAG[0] + P[3][0]*SH_MAG[2] - P[15][0]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][0]*(2*q0*q3 + 2*q1*q2) - P[17][0]*(2*q0*q2 - 2*q1*q3) - P[2][0]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[18][1] + P[1][1]*SH_MAG[0] + P[3][1]*SH_MAG[2] - P[15][1]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][1]*(2*q0*q3 + 2*q1*q2) - P[17][1]*(2*q0*q2 - 2*q1*q3) - P[2][1]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[2]*(P[18][3] + P[1][3]*SH_MAG[0] + P[3][3]*SH_MAG[2] - P[15][3]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][3]*(2*q0*q3 + 2*q1*q2) - P[17][3]*(2*q0*q2 - 2*q1*q3) - P[2][3]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6])*(P[18][15] + P[1][15]*SH_MAG[0] + P[3][15]*SH_MAG[2] - P[15][15]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][15]*(2*q0*q3 + 2*q1*q2) - P[17][15]*(2*q0*q2 - 2*q1*q3) - P[2][15]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][15]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[16][18]*(2*q0*q3 + 2*q1*q2) - P[17][18]*(2*q0*q2 - 2*q1*q3) - P[2][18]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + (2*q0*q3 + 2*q1*q2)*(P[18][16] + P[1][16]*SH_MAG[0] + P[3][16]*SH_MAG[2] - P[15][16]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][16]*(2*q0*q3 + 2*q1*q2) - P[17][16]*(2*q0*q2 - 2*q1*q3) - P[2][16]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q2 - 2*q1*q3)*(P[18][17] + P[1][17]*SH_MAG[0] + P[3][17]*SH_MAG[2] - P[15][17]*(SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]) + P[16][17]*(2*q0*q3 + 2*q1*q2) - P[17][17]*(2*q0*q2 - 2*q1*q3) - P[2][17]*(2*magD*q0 - 2*magE*q1 + 2*magN*q2) + P[0][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[0][18]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)); SK_MX[1] = SH_MAG[3] + SH_MAG[4] - SH_MAG[5] - SH_MAG[6]; @@ -1257,7 +1260,7 @@ void FuseMagnetometer() Kfusion[20] = SK_MX[0]*(P[20][18] + P[20][1]*SH_MAG[0] + P[20][3]*SH_MAG[2] + P[20][0]*SK_MX[3] - P[20][2]*SK_MX[2] - P[20][15]*SK_MX[1] + P[20][16]*SK_MX[5] - P[20][17]*SK_MX[4]); varInnovMag[0] = 1.0f/SK_MX[0]; innovMag[0] = MagPred[0] - magData.x; - + // reset the observation index to 0 (we start by fusing the X // measurement) obsIndex = 0; @@ -1274,7 +1277,7 @@ void FuseMagnetometer() H_MAG[16] = SH_MAG[4] - SH_MAG[3] - SH_MAG[5] + SH_MAG[6]; H_MAG[17] = 2*q0*q1 + 2*q2*q3; H_MAG[19] = 1; - + // Calculate Kalman gain SK_MY[0] = 1/(P[19][19] + R_MAG + P[0][19]*SH_MAG[2] + P[1][19]*SH_MAG[1] + P[2][19]*SH_MAG[0] - P[16][19]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - (2*q0*q3 - 2*q1*q2)*(P[19][15] + P[0][15]*SH_MAG[2] + P[1][15]*SH_MAG[1] + P[2][15]*SH_MAG[0] - P[16][15]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][15]*(2*q0*q3 - 2*q1*q2) + P[17][15]*(2*q0*q1 + 2*q2*q3) - P[3][15]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (2*q0*q1 + 2*q2*q3)*(P[19][17] + P[0][17]*SH_MAG[2] + P[1][17]*SH_MAG[1] + P[2][17]*SH_MAG[0] - P[16][17]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][17]*(2*q0*q3 - 2*q1*q2) + P[17][17]*(2*q0*q1 + 2*q2*q3) - P[3][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[19][3] + P[0][3]*SH_MAG[2] + P[1][3]*SH_MAG[1] + P[2][3]*SH_MAG[0] - P[16][3]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][3]*(2*q0*q3 - 2*q1*q2) + P[17][3]*(2*q0*q1 + 2*q2*q3) - P[3][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[15][19]*(2*q0*q3 - 2*q1*q2) + P[17][19]*(2*q0*q1 + 2*q2*q3) + SH_MAG[2]*(P[19][0] + P[0][0]*SH_MAG[2] + P[1][0]*SH_MAG[1] + P[2][0]*SH_MAG[0] - P[16][0]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][0]*(2*q0*q3 - 2*q1*q2) + P[17][0]*(2*q0*q1 + 2*q2*q3) - P[3][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[19][1] + P[0][1]*SH_MAG[2] + P[1][1]*SH_MAG[1] + P[2][1]*SH_MAG[0] - P[16][1]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][1]*(2*q0*q3 - 2*q1*q2) + P[17][1]*(2*q0*q1 + 2*q2*q3) - P[3][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[19][2] + P[0][2]*SH_MAG[2] + P[1][2]*SH_MAG[1] + P[2][2]*SH_MAG[0] - P[16][2]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][2]*(2*q0*q3 - 2*q1*q2) + P[17][2]*(2*q0*q1 + 2*q2*q3) - P[3][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6])*(P[19][16] + P[0][16]*SH_MAG[2] + P[1][16]*SH_MAG[1] + P[2][16]*SH_MAG[0] - P[16][16]*(SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]) - P[15][16]*(2*q0*q3 - 2*q1*q2) + P[17][16]*(2*q0*q1 + 2*q2*q3) - P[3][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - P[3][19]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)); SK_MY[1] = SH_MAG[3] - SH_MAG[4] + SH_MAG[5] - SH_MAG[6]; @@ -1317,7 +1320,7 @@ void FuseMagnetometer() H_MAG[16] = 2*q2*q3 - 2*q0*q1; H_MAG[17] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]; H_MAG[20] = 1; - + // Calculate Kalman gain SK_MZ[0] = 1/(P[20][20] + R_MAG + P[0][20]*SH_MAG[1] + P[3][20]*SH_MAG[0] + P[17][20]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) - (2*magD*q1 + 2*magE*q0 - 2*magN*q3)*(P[20][1] + P[0][1]*SH_MAG[1] + P[3][1]*SH_MAG[0] + P[17][1]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][1]*(2*q0*q2 + 2*q1*q3) - P[16][1]*(2*q0*q1 - 2*q2*q3) - P[1][1]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][1]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[7] + SH_MAG[8] - 2*magD*q2)*(P[20][2] + P[0][2]*SH_MAG[1] + P[3][2]*SH_MAG[0] + P[17][2]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][2]*(2*q0*q2 + 2*q1*q3) - P[16][2]*(2*q0*q1 - 2*q2*q3) - P[1][2]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][2]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[1]*(P[20][0] + P[0][0]*SH_MAG[1] + P[3][0]*SH_MAG[0] + P[17][0]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][0]*(2*q0*q2 + 2*q1*q3) - P[16][0]*(2*q0*q1 - 2*q2*q3) - P[1][0]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][0]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + SH_MAG[0]*(P[20][3] + P[0][3]*SH_MAG[1] + P[3][3]*SH_MAG[0] + P[17][3]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][3]*(2*q0*q2 + 2*q1*q3) - P[16][3]*(2*q0*q1 - 2*q2*q3) - P[1][3]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][3]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + (SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6])*(P[20][17] + P[0][17]*SH_MAG[1] + P[3][17]*SH_MAG[0] + P[17][17]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][17]*(2*q0*q2 + 2*q1*q3) - P[16][17]*(2*q0*q1 - 2*q2*q3) - P[1][17]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][17]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[15][20]*(2*q0*q2 + 2*q1*q3) - P[16][20]*(2*q0*q1 - 2*q2*q3) - P[1][20]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + (2*q0*q2 + 2*q1*q3)*(P[20][15] + P[0][15]*SH_MAG[1] + P[3][15]*SH_MAG[0] + P[17][15]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][15]*(2*q0*q2 + 2*q1*q3) - P[16][15]*(2*q0*q1 - 2*q2*q3) - P[1][15]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][15]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) - (2*q0*q1 - 2*q2*q3)*(P[20][16] + P[0][16]*SH_MAG[1] + P[3][16]*SH_MAG[0] + P[17][16]*(SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]) + P[15][16]*(2*q0*q2 + 2*q1*q3) - P[16][16]*(2*q0*q1 - 2*q2*q3) - P[1][16]*(2*magD*q1 + 2*magE*q0 - 2*magN*q3) + P[2][16]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)) + P[2][20]*(SH_MAG[7] + SH_MAG[8] - 2*magD*q2)); SK_MZ[1] = SH_MAG[3] - SH_MAG[4] - SH_MAG[5] + SH_MAG[6]; @@ -1348,9 +1351,9 @@ void FuseMagnetometer() Kfusion[20] = SK_MZ[0]*(P[20][20] + P[20][0]*SH_MAG[1] + P[20][3]*SH_MAG[0] - P[20][1]*SK_MZ[2] + P[20][2]*SK_MZ[3] + P[20][17]*SK_MZ[1] + P[20][15]*SK_MZ[5] - P[20][16]*SK_MZ[4]); varInnovMag[2] = 1.0f/SK_MZ[0]; innovMag[2] = MagPred[2] - magData.z; - + } - + // Check the innovation for consistency and don't fuse if > 5Sigma if ((innovMag[obsIndex]*innovMag[obsIndex]/varInnovMag[obsIndex]) < 25.0) { @@ -1434,18 +1437,18 @@ void FuseAirspeed() const float R_TAS = 2.0f; float SH_TAS[3]; float SK_TAS; - float H_TAS[n_states]; - float Kfusion[n_states]; + float H_TAS[21]; + float Kfusion[21]; float VtasPred; float quatMag; - + // Copy required states to local variable names vn = statesAtVtasMeasTime[4]; ve = statesAtVtasMeasTime[5]; vd = statesAtVtasMeasTime[6]; vwn = statesAtVtasMeasTime[13]; vwe = statesAtVtasMeasTime[14]; - + // Need to check that it is flying before fusing airspeed data // Calculate the predicted airspeed VtasPred = sqrt((ve - vwe)*(ve - vwe) + (vn - vwn)*(vn - vwn) + vd*vd); @@ -1462,7 +1465,7 @@ void FuseAirspeed() H_TAS[6] = vd*SH_TAS[0]; H_TAS[13] = -SH_TAS[2]; H_TAS[14] = -SH_TAS[1]; - + // Calculate Kalman gains SK_TAS = 1.0f/(R_TAS + SH_TAS[2]*(P[4][4]*SH_TAS[2] + P[5][4]*SH_TAS[1] - P[13][4]*SH_TAS[2] - P[14][4]*SH_TAS[1] + P[6][4]*vd*SH_TAS[0]) + SH_TAS[1]*(P[4][5]*SH_TAS[2] + P[5][5]*SH_TAS[1] - P[13][5]*SH_TAS[2] - P[14][5]*SH_TAS[1] + P[6][5]*vd*SH_TAS[0]) - SH_TAS[2]*(P[4][13]*SH_TAS[2] + P[5][13]*SH_TAS[1] - P[13][13]*SH_TAS[2] - P[14][13]*SH_TAS[1] + P[6][13]*vd*SH_TAS[0]) - SH_TAS[1]*(P[4][14]*SH_TAS[2] + P[5][14]*SH_TAS[1] - P[13][14]*SH_TAS[2] - P[14][14]*SH_TAS[1] + P[6][14]*vd*SH_TAS[0]) + vd*SH_TAS[0]*(P[4][6]*SH_TAS[2] + P[5][6]*SH_TAS[1] - P[13][6]*SH_TAS[2] - P[14][6]*SH_TAS[1] + P[6][6]*vd*SH_TAS[0])); Kfusion[0] = SK_TAS*(P[0][4]*SH_TAS[2] - P[0][13]*SH_TAS[2] + P[0][5]*SH_TAS[1] - P[0][14]*SH_TAS[1] + P[0][6]*vd*SH_TAS[0]); @@ -1487,7 +1490,7 @@ void FuseAirspeed() Kfusion[19] = SK_TAS*(P[19][4]*SH_TAS[2] - P[19][13]*SH_TAS[2] + P[19][5]*SH_TAS[1] - P[19][14]*SH_TAS[1] + P[19][6]*vd*SH_TAS[0]); Kfusion[20] = SK_TAS*(P[20][4]*SH_TAS[2] - P[20][13]*SH_TAS[2] + P[20][5]*SH_TAS[1] - P[20][14]*SH_TAS[1] + P[20][6]*vd*SH_TAS[0]); varInnovVtas = 1.0f/SK_TAS; - + // Calculate the measurement innovation innovVtas = VtasPred - VtasMeas; // Check the innovation for consistency and don't fuse if > 5Sigma @@ -1550,6 +1553,7 @@ void FuseAirspeed() } } } + void zeroRows(float covMat[n_states][n_states], uint8_t first, uint8_t last) { uint8_t row; @@ -1598,7 +1602,7 @@ void RecallStates(float statesForFusion[n_states], uint32_t msec) long int bestTimeDelta = 200; uint8_t storeIndex; uint8_t bestStoreIndex = 0; - for (storeIndex=0; storeIndex < n_states; storeIndex++) + for (storeIndex=0; storeIndex < data_buffer_size; storeIndex++) { timeDelta = msec - statetimeStamp[storeIndex]; if (timeDelta < 0) timeDelta = -timeDelta; diff --git a/src/modules/fw_att_pos_estimator/estimator.h b/src/modules/fw_att_pos_estimator/estimator.h index d95745c80c..a7dd08a935 100644 --- a/src/modules/fw_att_pos_estimator/estimator.h +++ b/src/modules/fw_att_pos_estimator/estimator.h @@ -117,6 +117,9 @@ extern float gpsLon; extern float gpsHgt; extern uint8_t GPSstatus; +// Baro input +extern float baroHgt; + extern bool statesInitialised; const float covTimeStepMax = 0.07f; // maximum time allowed between covariance predictions