forked from Archive/PX4-Autopilot
estimator messages add explicit timestamp_sample
- timestamp is uORB publication metadata - this allows us to see what the system saw at publication time plus the latency in estimation
This commit is contained in:
parent
09666c324f
commit
20c2fe6d28
|
@ -1,4 +1,5 @@
|
|||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
# GPS
|
||||
float32[2] gps_hvel # horizontal GPS velocity innovation (m/sec) and innovation variance ((m/sec)**2)
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#
|
||||
|
||||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
# In-run bias estimates (subtract from uncorrected data)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
float32[24] states # Internal filter states
|
||||
uint8 n_states # Number of states effectively used
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
float32[3] vibe # IMU vibration metrics in the following array locations
|
||||
# 0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
uint64 timestamp # time since system start (microseconds)
|
||||
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
float32[4] q # Quaternion rotation from XYZ body frame to NED earth frame.
|
||||
float32[4] delta_q_reset # Amount by which quaternion has changed during last reset
|
||||
uint8 quat_reset_counter # Quaternion reset counter
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
#
|
||||
|
||||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
float64 lat # Latitude, (degrees)
|
||||
float64 lon # Longitude, (degrees)
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# Fused local position in NED.
|
||||
|
||||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
bool xy_valid # true if x and y are valid
|
||||
bool z_valid # true if z is valid
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
float32 windspeed_north # Wind component in north / X direction (m/sec)
|
||||
float32 windspeed_east # Wind component in east / Y direction (m/sec)
|
||||
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
uint64 timestamp # time since system start (microseconds)
|
||||
uint64 timestamp_sample # the timestamp of the raw data (microseconds)
|
||||
|
||||
float32 yaw_composite # composite yaw from GSF (rad)
|
||||
float32 yaw_variance # composite yaw variance from GSF (rad^2)
|
||||
|
||||
float32[5] yaw # yaw estimate for each model in the filter bank (rad)
|
||||
float32[5] innov_vn # North velocity innovation for each model in the filter bank (m/s)
|
||||
float32[5] innov_ve # East velocity innovation for each model in the filter bank (m/s)
|
||||
|
|
|
@ -358,10 +358,11 @@ AttitudeEstimatorQ::Run()
|
|||
|
||||
if (update(dt)) {
|
||||
vehicle_attitude_s att = {};
|
||||
att.timestamp = sensors.timestamp;
|
||||
att.timestamp_sample = sensors.timestamp;
|
||||
_q.copyTo(att.q);
|
||||
|
||||
/* the instance count is not used here */
|
||||
att.timestamp = hrt_absolute_time();
|
||||
_att_pub.publish(att);
|
||||
|
||||
}
|
||||
|
|
|
@ -743,14 +743,11 @@ void EKF2::Run()
|
|||
if (control_status.flags.tilt_align) {
|
||||
// generate vehicle local position data
|
||||
vehicle_local_position_s &lpos = _vehicle_local_position_pub.get();
|
||||
lpos.timestamp_sample = imu_sample_new.time_us;
|
||||
|
||||
// generate vehicle odometry data
|
||||
vehicle_odometry_s odom{};
|
||||
|
||||
lpos.timestamp = now;
|
||||
|
||||
odom.timestamp = hrt_absolute_time();
|
||||
odom.timestamp_sample = now;
|
||||
odom.timestamp_sample = imu_sample_new.time_us;
|
||||
|
||||
odom.local_frame = vehicle_odometry_s::LOCAL_FRAME_NED;
|
||||
|
||||
|
@ -922,9 +919,11 @@ void EKF2::Run()
|
|||
odom.velocity_covariance[odom.COVARIANCE_MATRIX_VZ_VARIANCE] = covariances[6];
|
||||
|
||||
// publish vehicle local position data
|
||||
lpos.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_vehicle_local_position_pub.update();
|
||||
|
||||
// publish vehicle odometry data
|
||||
odom.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_vehicle_odometry_pub.publish(odom);
|
||||
|
||||
// publish external visual odometry after fixed frame alignment if new odometry is received
|
||||
|
@ -975,8 +974,7 @@ void EKF2::Run()
|
|||
if (_ekf.global_position_is_valid() && !_preflt_checker.hasFailed()) {
|
||||
// generate and publish global position data
|
||||
vehicle_global_position_s &global_pos = _vehicle_global_position_pub.get();
|
||||
|
||||
global_pos.timestamp = now;
|
||||
global_pos.timestamp_sample = imu_sample_new.time_us;
|
||||
|
||||
if (fabsf(lpos_x_prev - lpos.x) > FLT_EPSILON || fabsf(lpos_y_prev - lpos.y) > FLT_EPSILON) {
|
||||
map_projection_reproject(&ekf_origin, lpos.x, lpos.y, &global_pos.lat, &global_pos.lon);
|
||||
|
@ -1002,13 +1000,14 @@ void EKF2::Run()
|
|||
}
|
||||
|
||||
global_pos.dead_reckoning = _ekf.inertial_dead_reckoning(); // True if this position is estimated through dead-reckoning
|
||||
|
||||
global_pos.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_vehicle_global_position_pub.update();
|
||||
}
|
||||
}
|
||||
|
||||
// publish estimator states
|
||||
estimator_states_s states;
|
||||
states.timestamp_sample = imu_sample_new.time_us;
|
||||
states.n_states = 24;
|
||||
_ekf.getStateAtFusionHorizonAsVector().copyTo(states.states);
|
||||
_ekf.covariances_diagonal().copyTo(states.covariances);
|
||||
|
@ -1017,6 +1016,7 @@ void EKF2::Run()
|
|||
|
||||
// publish estimator status
|
||||
estimator_status_s status{};
|
||||
status.timestamp_sample = imu_sample_new.time_us;
|
||||
_ekf.getOutputTrackingError().copyTo(status.output_tracking_error);
|
||||
_ekf.get_gps_check_status(&status.gps_check_fail_flags);
|
||||
// only report enabled GPS check failures (the param indexes are shifted by 1 bit, because they don't include
|
||||
|
@ -1039,12 +1039,12 @@ void EKF2::Run()
|
|||
status.pre_flt_fail_innov_vel_vert = _preflt_checker.hasVertVelFailed();
|
||||
status.pre_flt_fail_innov_height = _preflt_checker.hasHeightFailed();
|
||||
status.pre_flt_fail_mag_field_disturbed = control_status.flags.mag_field_disturbed;
|
||||
|
||||
status.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_estimator_status_pub.publish(status);
|
||||
|
||||
{
|
||||
// publish all corrected sensor readings and bias estimates after mag calibration is updated above
|
||||
bias.timestamp = now;
|
||||
bias.timestamp_sample = imu_sample_new.time_us;
|
||||
|
||||
// take device ids from sensor_selection_s if not using specific vehicle_imu_s
|
||||
if (_imu_sub_index < 0) {
|
||||
|
@ -1062,6 +1062,7 @@ void EKF2::Run()
|
|||
bias.mag_bias[1] = _last_valid_mag_cal[1];
|
||||
bias.mag_bias[2] = _last_valid_mag_cal[2];
|
||||
|
||||
bias.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_estimator_sensor_bias_pub.publish(bias);
|
||||
}
|
||||
|
||||
|
@ -1071,11 +1072,11 @@ void EKF2::Run()
|
|||
|
||||
if (_ekf.get_gps_drift_metrics(gps_drift, &blocked)) {
|
||||
ekf_gps_drift_s drift_data;
|
||||
drift_data.timestamp = now;
|
||||
drift_data.hpos_drift_rate = gps_drift[0];
|
||||
drift_data.vpos_drift_rate = gps_drift[1];
|
||||
drift_data.hspd = gps_drift[2];
|
||||
drift_data.blocked = blocked;
|
||||
drift_data.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
|
||||
_ekf_gps_drift_pub.publish(drift_data);
|
||||
}
|
||||
|
@ -1163,7 +1164,7 @@ void EKF2::Run()
|
|||
{
|
||||
// publish estimator innovation data
|
||||
estimator_innovations_s innovations;
|
||||
innovations.timestamp = now;
|
||||
innovations.timestamp_sample = imu_sample_new.time_us;
|
||||
_ekf.getGpsVelPosInnov(&innovations.gps_hvel[0], innovations.gps_vvel, &innovations.gps_hpos[0],
|
||||
innovations.gps_vpos);
|
||||
_ekf.getEvVelPosInnov(&innovations.ev_hvel[0], innovations.ev_vvel, &innovations.ev_hpos[0], innovations.ev_vpos);
|
||||
|
@ -1184,7 +1185,7 @@ void EKF2::Run()
|
|||
|
||||
// publish estimator innovation variance data
|
||||
estimator_innovations_s innovation_var;
|
||||
innovation_var.timestamp = now;
|
||||
innovation_var.timestamp_sample = imu_sample_new.time_us;
|
||||
_ekf.getGpsVelPosInnovVar(&innovation_var.gps_hvel[0], innovation_var.gps_vvel, &innovation_var.gps_hpos[0],
|
||||
innovation_var.gps_vpos);
|
||||
_ekf.getEvVelPosInnovVar(&innovation_var.ev_hvel[0], innovation_var.ev_vvel, &innovation_var.ev_hpos[0],
|
||||
|
@ -1207,7 +1208,7 @@ void EKF2::Run()
|
|||
|
||||
// publish estimator innovation test ratio data
|
||||
estimator_innovations_s test_ratios;
|
||||
test_ratios.timestamp = now;
|
||||
test_ratios.timestamp_sample = imu_sample_new.time_us;
|
||||
_ekf.getGpsVelPosInnovRatio(test_ratios.gps_hvel[0], test_ratios.gps_vvel, test_ratios.gps_hpos[0],
|
||||
test_ratios.gps_vpos);
|
||||
_ekf.getEvVelPosInnovRatio(test_ratios.ev_hvel[0], test_ratios.ev_vvel, test_ratios.ev_hpos[0],
|
||||
|
@ -1236,10 +1237,14 @@ void EKF2::Run()
|
|||
resetPreFlightChecks();
|
||||
}
|
||||
|
||||
innovations.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_estimator_innovations_pub.publish(innovations);
|
||||
_estimator_innovation_variances_pub.publish(innovation_var);
|
||||
_estimator_innovation_test_ratios_pub.publish(test_ratios);
|
||||
|
||||
innovation_var.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_estimator_innovation_variances_pub.publish(innovation_var);
|
||||
|
||||
test_ratios.timestamp = _replay_mode ? now : hrt_absolute_time();
|
||||
_estimator_innovation_test_ratios_pub.publish(test_ratios);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1318,13 +1323,12 @@ void EKF2::publish_attitude(const hrt_abstime ×tamp)
|
|||
if (_ekf.attitude_valid()) {
|
||||
// generate vehicle attitude quaternion data
|
||||
vehicle_attitude_s att;
|
||||
att.timestamp = timestamp;
|
||||
|
||||
att.timestamp_sample = timestamp;
|
||||
const Quatf q{_ekf.calculate_quaternion()};
|
||||
q.copyTo(att.q);
|
||||
|
||||
_ekf.get_quat_reset(&att.delta_q_reset[0], &att.quat_reset_counter);
|
||||
|
||||
att.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
|
||||
_att_pub.publish(att);
|
||||
|
||||
} else if (_replay_mode) {
|
||||
|
@ -1347,7 +1351,8 @@ void EKF2::publish_yaw_estimator_status(const hrt_abstime ×tamp)
|
|||
&yaw_est_test_data.innov_vn[0], &yaw_est_test_data.innov_ve[0],
|
||||
&yaw_est_test_data.weight[0])) {
|
||||
|
||||
yaw_est_test_data.timestamp = timestamp;
|
||||
yaw_est_test_data.timestamp_sample = timestamp;
|
||||
yaw_est_test_data.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
|
||||
|
||||
_yaw_est_pub.publish(yaw_est_test_data);
|
||||
}
|
||||
|
@ -1358,18 +1363,21 @@ void EKF2::publish_wind_estimate(const hrt_abstime ×tamp)
|
|||
if (_ekf.get_wind_status()) {
|
||||
// Publish wind estimate only if ekf declares them valid
|
||||
wind_estimate_s wind_estimate{};
|
||||
wind_estimate.timestamp_sample = timestamp;
|
||||
|
||||
const Vector2f wind_vel = _ekf.getWindVelocity();
|
||||
const Vector2f wind_vel_var = _ekf.getWindVelocityVariance();
|
||||
_ekf.getAirspeedInnov(wind_estimate.tas_innov);
|
||||
_ekf.getAirspeedInnovVar(wind_estimate.tas_innov_var);
|
||||
_ekf.getBetaInnov(wind_estimate.beta_innov);
|
||||
_ekf.getBetaInnovVar(wind_estimate.beta_innov_var);
|
||||
wind_estimate.timestamp = timestamp;
|
||||
|
||||
wind_estimate.windspeed_north = wind_vel(0);
|
||||
wind_estimate.windspeed_east = wind_vel(1);
|
||||
wind_estimate.variance_north = wind_vel_var(0);
|
||||
wind_estimate.variance_east = wind_vel_var(1);
|
||||
wind_estimate.tas_scale = 0.0f; //leave at 0 as scale is not estimated in ekf
|
||||
wind_estimate.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
|
||||
|
||||
_wind_pub.publish(wind_estimate);
|
||||
}
|
||||
|
|
|
@ -500,9 +500,13 @@ void BlockLocalPositionEstimator::Run()
|
|||
publishLocalPos();
|
||||
publishOdom();
|
||||
publishEstimatorStatus();
|
||||
_pub_innov.get().timestamp = _timeStamp;
|
||||
|
||||
_pub_innov.get().timestamp_sample = _timeStamp;
|
||||
_pub_innov.get().timestamp = hrt_absolute_time();
|
||||
_pub_innov.update();
|
||||
_pub_innov_var.get().timestamp = _timeStamp;
|
||||
|
||||
_pub_innov_var.get().timestamp_sample = _timeStamp;
|
||||
_pub_innov_var.get().timestamp = hrt_absolute_time();
|
||||
_pub_innov_var.update();
|
||||
|
||||
if ((_estimatorInitialized & EST_XY) && (_map_ref.init_done || _param_lpe_fake_origin.get())) {
|
||||
|
@ -578,7 +582,7 @@ void BlockLocalPositionEstimator::publishLocalPos()
|
|||
if (PX4_ISFINITE(_x(X_x)) && PX4_ISFINITE(_x(X_y)) && PX4_ISFINITE(_x(X_z)) &&
|
||||
PX4_ISFINITE(_x(X_vx)) && PX4_ISFINITE(_x(X_vy))
|
||||
&& PX4_ISFINITE(_x(X_vz))) {
|
||||
_pub_lpos.get().timestamp = _timeStamp;
|
||||
_pub_lpos.get().timestamp_sample = _timeStamp;
|
||||
|
||||
_pub_lpos.get().xy_valid = _estimatorInitialized & EST_XY;
|
||||
_pub_lpos.get().z_valid = _estimatorInitialized & EST_Z;
|
||||
|
@ -628,6 +632,7 @@ void BlockLocalPositionEstimator::publishLocalPos()
|
|||
_pub_lpos.get().vz_max = INFINITY;
|
||||
_pub_lpos.get().hagl_min = INFINITY;
|
||||
_pub_lpos.get().hagl_max = INFINITY;
|
||||
_pub_lpos.get().timestamp = hrt_absolute_time();;
|
||||
_pub_lpos.update();
|
||||
}
|
||||
}
|
||||
|
@ -640,7 +645,7 @@ void BlockLocalPositionEstimator::publishOdom()
|
|||
if (PX4_ISFINITE(_x(X_x)) && PX4_ISFINITE(_x(X_y)) && PX4_ISFINITE(_x(X_z)) &&
|
||||
PX4_ISFINITE(_x(X_vx)) && PX4_ISFINITE(_x(X_vy))
|
||||
&& PX4_ISFINITE(_x(X_vz))) {
|
||||
_pub_odom.get().timestamp = hrt_absolute_time();
|
||||
|
||||
_pub_odom.get().timestamp_sample = _timeStamp;
|
||||
_pub_odom.get().local_frame = vehicle_odometry_s::LOCAL_FRAME_NED;
|
||||
|
||||
|
@ -706,14 +711,14 @@ void BlockLocalPositionEstimator::publishOdom()
|
|||
_pub_odom.get().velocity_covariance[_pub_odom.get().COVARIANCE_MATRIX_PITCHRATE_VARIANCE] = NAN;
|
||||
_pub_odom.get().velocity_covariance[_pub_odom.get().COVARIANCE_MATRIX_YAWRATE_VARIANCE] = NAN;
|
||||
|
||||
_pub_odom.get().timestamp = hrt_absolute_time();
|
||||
_pub_odom.update();
|
||||
}
|
||||
}
|
||||
|
||||
void BlockLocalPositionEstimator::publishEstimatorStatus()
|
||||
{
|
||||
_pub_est_states.get().timestamp = _timeStamp;
|
||||
_pub_est_status.get().timestamp = _timeStamp;
|
||||
_pub_est_states.get().timestamp_sample = _timeStamp;
|
||||
|
||||
for (size_t i = 0; i < n_x; i++) {
|
||||
_pub_est_states.get().states[i] = _x(i);
|
||||
|
@ -752,11 +757,17 @@ void BlockLocalPositionEstimator::publishEstimatorStatus()
|
|||
_pub_est_states.get().covariances[23] = NAN;
|
||||
|
||||
_pub_est_states.get().n_states = n_x;
|
||||
_pub_est_states.get().timestamp = hrt_absolute_time();
|
||||
_pub_est_states.update();
|
||||
|
||||
// estimator_status
|
||||
_pub_est_status.get().timestamp_sample = _timeStamp;
|
||||
_pub_est_status.get().health_flags = _sensorFault;
|
||||
_pub_est_status.get().timeout_flags = _sensorTimeout;
|
||||
_pub_est_status.get().pos_horiz_accuracy = _pub_gpos.get().eph;
|
||||
_pub_est_status.get().pos_vert_accuracy = _pub_gpos.get().epv;
|
||||
|
||||
_pub_est_status.get().timestamp = hrt_absolute_time();
|
||||
_pub_est_status.update();
|
||||
}
|
||||
|
||||
|
@ -790,7 +801,7 @@ void BlockLocalPositionEstimator::publishGlobalPos()
|
|||
if (PX4_ISFINITE(lat) && PX4_ISFINITE(lon) && PX4_ISFINITE(alt) &&
|
||||
PX4_ISFINITE(xLP(X_vx)) && PX4_ISFINITE(xLP(X_vy)) &&
|
||||
PX4_ISFINITE(xLP(X_vz))) {
|
||||
_pub_gpos.get().timestamp = _timeStamp;
|
||||
_pub_gpos.get().timestamp_sample = _timeStamp;
|
||||
_pub_gpos.get().lat = lat;
|
||||
_pub_gpos.get().lon = lon;
|
||||
_pub_gpos.get().alt = alt;
|
||||
|
@ -799,6 +810,7 @@ void BlockLocalPositionEstimator::publishGlobalPos()
|
|||
_pub_gpos.get().terrain_alt = _altOrigin - xLP(X_tz);
|
||||
_pub_gpos.get().terrain_alt_valid = _estimatorInitialized & EST_TZ;
|
||||
_pub_gpos.get().dead_reckoning = !(_estimatorInitialized & EST_XY);
|
||||
_pub_gpos.get().timestamp = hrt_absolute_time();
|
||||
_pub_gpos.update();
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue