feb539bade
only HIL sensors - removed HIL_MODE_ATTITUDE as it didn't exercise enough of the code
119 lines
4.0 KiB
Plaintext
119 lines
4.0 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
static void init_sonar(void)
|
|
{
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
sonar.Init(&adc);
|
|
sonar2.Init(&adc);
|
|
#else
|
|
sonar.Init(NULL);
|
|
sonar2.Init(NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
read and update the battery
|
|
*/
|
|
static void read_battery(void)
|
|
{
|
|
if(g.battery_monitoring == 0) {
|
|
battery_voltage1 = 0;
|
|
return;
|
|
}
|
|
|
|
if(g.battery_monitoring == 3 || g.battery_monitoring == 4) {
|
|
// this copes with changing the pin at runtime
|
|
batt_volt_pin->set_pin(g.battery_volt_pin);
|
|
battery_voltage1 = BATTERY_VOLTAGE(batt_volt_pin);
|
|
}
|
|
|
|
if (g.battery_monitoring == 4) {
|
|
static uint32_t last_time_ms;
|
|
uint32_t tnow = hal.scheduler->millis();
|
|
float dt = tnow - last_time_ms;
|
|
if (last_time_ms != 0 && dt < 2000) {
|
|
// this copes with changing the pin at runtime
|
|
batt_curr_pin->set_pin(g.battery_curr_pin);
|
|
current_amps1 = CURRENT_AMPS(batt_curr_pin);
|
|
// .0002778 is 1/3600 (conversion to hours)
|
|
current_total1 += current_amps1 * dt * 0.0002778;
|
|
}
|
|
last_time_ms = tnow;
|
|
}
|
|
}
|
|
|
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink
|
|
// RC_CHANNELS_SCALED message
|
|
void read_receiver_rssi(void)
|
|
{
|
|
rssi_analog_source->set_pin(g.rssi_pin);
|
|
float ret = rssi_analog_source->voltage_average() * 50;
|
|
receiver_rssi = constrain_int16(ret, 0, 255);
|
|
}
|
|
|
|
// read the sonars
|
|
static void read_sonars(void)
|
|
{
|
|
if (!sonar.enabled()) {
|
|
// this makes it possible to disable sonar at runtime
|
|
return;
|
|
}
|
|
|
|
if (sonar2.enabled()) {
|
|
// we have two sonars
|
|
obstacle.sonar1_distance_cm = sonar.distance_cm();
|
|
obstacle.sonar2_distance_cm = sonar2.distance_cm();
|
|
if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm &&
|
|
obstacle.sonar2_distance_cm <= (uint16_t)obstacle.sonar2_distance_cm) {
|
|
// we have an object on the left
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(PSTR("Sonar1 obstacle %u cm"),
|
|
(unsigned)obstacle.sonar1_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = hal.scheduler->millis();
|
|
obstacle.turn_angle = g.sonar_turn_angle;
|
|
} else if (obstacle.sonar2_distance_cm <= (uint16_t)g.sonar_trigger_cm) {
|
|
// we have an object on the right
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(PSTR("Sonar2 obstacle %u cm"),
|
|
(unsigned)obstacle.sonar2_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = hal.scheduler->millis();
|
|
obstacle.turn_angle = -g.sonar_turn_angle;
|
|
}
|
|
} else {
|
|
// we have a single sonar
|
|
obstacle.sonar1_distance_cm = sonar.distance_cm();
|
|
obstacle.sonar2_distance_cm = 0;
|
|
if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm) {
|
|
// obstacle detected in front
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(PSTR("Sonar obstacle %u cm"),
|
|
(unsigned)obstacle.sonar1_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = hal.scheduler->millis();
|
|
obstacle.turn_angle = g.sonar_turn_angle;
|
|
}
|
|
}
|
|
|
|
Log_Write_Sonar();
|
|
|
|
// no object detected - reset after the turn time
|
|
if (obstacle.detected_count >= g.sonar_debounce &&
|
|
hal.scheduler->millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) {
|
|
gcs_send_text_fmt(PSTR("Obstacle passed"));
|
|
obstacle.detected_count = 0;
|
|
obstacle.turn_angle = 0;
|
|
}
|
|
}
|