// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static void init_sonar(void) { #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 sonar.Init(&adc); sonar2.Init(&adc); #else sonar.Init(NULL); sonar2.Init(NULL); #endif } /* read and update the battery */ static void read_battery(void) { if(g.battery_monitoring == 0) { battery_voltage1 = 0; return; } if(g.battery_monitoring == 3 || g.battery_monitoring == 4) { // this copes with changing the pin at runtime batt_volt_pin->set_pin(g.battery_volt_pin); battery_voltage1 = BATTERY_VOLTAGE(batt_volt_pin); } if (g.battery_monitoring == 4) { static uint32_t last_time_ms; uint32_t tnow = hal.scheduler->millis(); float dt = tnow - last_time_ms; if (last_time_ms != 0 && dt < 2000) { // this copes with changing the pin at runtime batt_curr_pin->set_pin(g.battery_curr_pin); current_amps1 = CURRENT_AMPS(batt_curr_pin); // .0002778 is 1/3600 (conversion to hours) current_total1 += current_amps1 * dt * 0.0002778; } last_time_ms = tnow; } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void read_receiver_rssi(void) { rssi_analog_source->set_pin(g.rssi_pin); float ret = rssi_analog_source->voltage_average() * 50; receiver_rssi = constrain_int16(ret, 0, 255); } // read the sonars static void read_sonars(void) { if (!sonar.enabled()) { // this makes it possible to disable sonar at runtime return; } if (sonar2.enabled()) { // we have two sonars obstacle.sonar1_distance_cm = sonar.distance_cm(); obstacle.sonar2_distance_cm = sonar2.distance_cm(); if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm && obstacle.sonar2_distance_cm <= (uint16_t)obstacle.sonar2_distance_cm) { // we have an object on the left if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(PSTR("Sonar1 obstacle %u cm"), (unsigned)obstacle.sonar1_distance_cm); } obstacle.detected_time_ms = hal.scheduler->millis(); obstacle.turn_angle = g.sonar_turn_angle; } else if (obstacle.sonar2_distance_cm <= (uint16_t)g.sonar_trigger_cm) { // we have an object on the right if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(PSTR("Sonar2 obstacle %u cm"), (unsigned)obstacle.sonar2_distance_cm); } obstacle.detected_time_ms = hal.scheduler->millis(); obstacle.turn_angle = -g.sonar_turn_angle; } } else { // we have a single sonar obstacle.sonar1_distance_cm = sonar.distance_cm(); obstacle.sonar2_distance_cm = 0; if (obstacle.sonar1_distance_cm <= (uint16_t)g.sonar_trigger_cm) { // obstacle detected in front if (obstacle.detected_count < 127) { obstacle.detected_count++; } if (obstacle.detected_count == g.sonar_debounce) { gcs_send_text_fmt(PSTR("Sonar obstacle %u cm"), (unsigned)obstacle.sonar1_distance_cm); } obstacle.detected_time_ms = hal.scheduler->millis(); obstacle.turn_angle = g.sonar_turn_angle; } } Log_Write_Sonar(); // no object detected - reset after the turn time if (obstacle.detected_count >= g.sonar_debounce && hal.scheduler->millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) { gcs_send_text_fmt(PSTR("Obstacle passed")); obstacle.detected_count = 0; obstacle.turn_angle = 0; } }