c6f9889a25
Also get_stopping_distance and get_margin
118 lines
4.0 KiB
C++
118 lines
4.0 KiB
C++
#include "AC_Avoid.h"
|
|
|
|
const AP_Param::GroupInfo AC_Avoid::var_info[] = {
|
|
|
|
// @Param: ENABLE
|
|
// @DisplayName: Avoidance control enable/disable
|
|
// @Description: Enabled/disable stopping at fence
|
|
// @Values: 0:None,1:StopAtFence
|
|
// @User: Standard
|
|
AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_STOP_AT_FENCE),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/// Constructor
|
|
AC_Avoid::AC_Avoid(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AC_Fence& fence)
|
|
: _ahrs(ahrs),
|
|
_inav(inav),
|
|
_fence(fence)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
void AC_Avoid::adjust_velocity(const float kP, const float accel_cmss, Vector2f &desired_vel)
|
|
{
|
|
// exit immediately if disabled
|
|
if (_enabled == AC_AVOID_DISABLED) {
|
|
return;
|
|
}
|
|
|
|
// limit acceleration
|
|
float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX);
|
|
|
|
if (_enabled == AC_AVOID_STOP_AT_FENCE) {
|
|
adjust_velocity_circle(kP, accel_cmss_limited, desired_vel);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the circular fence.
|
|
*/
|
|
void AC_Avoid::adjust_velocity_circle(const float kP, const float accel_cmss, Vector2f &desired_vel)
|
|
{
|
|
// exit if circular fence is not enabled
|
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) {
|
|
return;
|
|
}
|
|
|
|
// get position as a 2D offset in cm from ahrs home
|
|
const Vector2f position_xy = get_position();
|
|
|
|
float speed = desired_vel.length();
|
|
// get the fence radius in cm
|
|
const float fence_radius = _fence.get_radius() * 100.0f;
|
|
// get the margin to the fence in cm
|
|
const float margin = get_margin();
|
|
|
|
if (!is_zero(speed) && position_xy.length() <= fence_radius) {
|
|
// Currently inside circular fence
|
|
Vector2f stopping_point = position_xy + desired_vel*(get_stopping_distance(kP, accel_cmss, speed)/speed);
|
|
float stopping_point_length = stopping_point.length();
|
|
if (stopping_point_length > fence_radius - margin) {
|
|
// Unsafe desired velocity - will not be able to stop before fence breach
|
|
// Project stopping point radially onto fence boundary
|
|
// Adjusted velocity will point towards this projected point at a safe speed
|
|
Vector2f target = stopping_point * ((fence_radius - margin) / stopping_point_length);
|
|
Vector2f target_direction = target - position_xy;
|
|
float distance_to_target = target_direction.length();
|
|
float max_speed = get_max_speed(kP, accel_cmss, distance_to_target);
|
|
desired_vel = target_direction * (MIN(speed,max_speed) / distance_to_target);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Gets the current xy-position, relative to home (not relative to EKF origin)
|
|
*/
|
|
Vector2f AC_Avoid::get_position()
|
|
{
|
|
const Vector3f position_xyz = _inav.get_position();
|
|
const Vector2f position_xy(position_xyz.x,position_xyz.y);
|
|
const Vector2f diff = location_diff(_inav.get_origin(),_ahrs.get_home()) * 100.0f;
|
|
return position_xy - diff;
|
|
}
|
|
|
|
/*
|
|
* Computes the speed such that the stopping distance
|
|
* of the vehicle will be exactly the input distance.
|
|
*/
|
|
float AC_Avoid::get_max_speed(const float kP, const float accel_cmss, const float distance) const
|
|
{
|
|
return AC_AttitudeControl::sqrt_controller(distance, kP, accel_cmss);
|
|
}
|
|
|
|
/*
|
|
* Computes distance required to stop, given current speed.
|
|
*
|
|
* Implementation copied from AC_PosControl.
|
|
*/
|
|
float AC_Avoid::get_stopping_distance(const float kP, const float accel_cmss, const float speed) const
|
|
{
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
|
|
if (kP <= 0.0f || accel_cmss <= 0.0f || is_zero(speed)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// calculate point at which velocity switches from linear to sqrt
|
|
float linear_speed = accel_cmss/kP;
|
|
|
|
// calculate distance within which we can stop
|
|
if (speed < linear_speed) {
|
|
return speed/kP;
|
|
} else {
|
|
float linear_distance = accel_cmss/(2.0f*kP*kP);
|
|
return linear_distance + (speed*speed)/(2.0f*accel_cmss);
|
|
}
|
|
}
|