#include "AC_Avoid.h" const AP_Param::GroupInfo AC_Avoid::var_info[] = { // @Param: ENABLE // @DisplayName: Avoidance control enable/disable // @Description: Enabled/disable stopping at fence // @Values: 0:None,1:StopAtFence // @User: Standard AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_STOP_AT_FENCE), AP_GROUPEND }; /// Constructor AC_Avoid::AC_Avoid(const AP_AHRS& ahrs, const AP_InertialNav& inav, const AC_Fence& fence) : _ahrs(ahrs), _inav(inav), _fence(fence) { AP_Param::setup_object_defaults(this, var_info); } void AC_Avoid::adjust_velocity(const float kP, const float accel_cmss, Vector2f &desired_vel) { // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // limit acceleration float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); if (_enabled == AC_AVOID_STOP_AT_FENCE) { adjust_velocity_circle(kP, accel_cmss_limited, desired_vel); } } /* * Adjusts the desired velocity for the circular fence. */ void AC_Avoid::adjust_velocity_circle(const float kP, const float accel_cmss, Vector2f &desired_vel) { // exit if circular fence is not enabled if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { return; } // get position as a 2D offset in cm from ahrs home const Vector2f position_xy = get_position(); float speed = desired_vel.length(); // get the fence radius in cm const float fence_radius = _fence.get_radius() * 100.0f; // get the margin to the fence in cm const float margin = get_margin(); if (!is_zero(speed) && position_xy.length() <= fence_radius) { // Currently inside circular fence Vector2f stopping_point = position_xy + desired_vel*(get_stopping_distance(kP, accel_cmss, speed)/speed); float stopping_point_length = stopping_point.length(); if (stopping_point_length > fence_radius - margin) { // Unsafe desired velocity - will not be able to stop before fence breach // Project stopping point radially onto fence boundary // Adjusted velocity will point towards this projected point at a safe speed Vector2f target = stopping_point * ((fence_radius - margin) / stopping_point_length); Vector2f target_direction = target - position_xy; float distance_to_target = target_direction.length(); float max_speed = get_max_speed(kP, accel_cmss, distance_to_target); desired_vel = target_direction * (MIN(speed,max_speed) / distance_to_target); } } } /* * Gets the current xy-position, relative to home (not relative to EKF origin) */ Vector2f AC_Avoid::get_position() { const Vector3f position_xyz = _inav.get_position(); const Vector2f position_xy(position_xyz.x,position_xyz.y); const Vector2f diff = location_diff(_inav.get_origin(),_ahrs.get_home()) * 100.0f; return position_xy - diff; } /* * Computes the speed such that the stopping distance * of the vehicle will be exactly the input distance. */ float AC_Avoid::get_max_speed(const float kP, const float accel_cmss, const float distance) const { return AC_AttitudeControl::sqrt_controller(distance, kP, accel_cmss); } /* * Computes distance required to stop, given current speed. * * Implementation copied from AC_PosControl. */ float AC_Avoid::get_stopping_distance(const float kP, const float accel_cmss, const float speed) const { // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (kP <= 0.0f || accel_cmss <= 0.0f || is_zero(speed)) { return 0.0f; } // calculate point at which velocity switches from linear to sqrt float linear_speed = accel_cmss/kP; // calculate distance within which we can stop if (speed < linear_speed) { return speed/kP; } else { float linear_distance = accel_cmss/(2.0f*kP*kP); return linear_distance + (speed*speed)/(2.0f*accel_cmss); } }