Ardupilot2/libraries/SITL/SIM_Motor.cpp
2016-04-22 10:28:15 +10:00

64 lines
2.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simple electric motor simulator class
*/
#include "SIM_Motor.h"
#include <AP_Motors/AP_Motors.h>
using namespace SITL;
// calculate rotational accel and thrust for a motor
void Motor::calculate_forces(const Aircraft::sitl_input &input,
const float thrust_scale,
uint8_t motor_offset,
Vector3f &rot_accel,
Vector3f &thrust) const
{
float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1);
rot_accel.x = -radians(5000.0) * sinf(radians(angle)) * motor_speed;
rot_accel.y = radians(5000.0) * cosf(radians(angle)) * motor_speed;
rot_accel.z = yaw_factor * motor_speed * radians(400.0);
thrust(0, 0, motor_speed * thrust_scale); // newtons
if (roll_servo >= 0) {
float roll;
if (roll_min < roll_max) {
roll = constrain_float(roll_min + (input.servos[roll_servo]-1000)*0.001*(roll_max-roll_min), roll_min, roll_max);
} else {
roll = constrain_float(roll_max + (2000-input.servos[roll_servo])*0.001*(roll_min-roll_max), roll_max, roll_min);
}
Matrix3f rotation;
rotation.from_euler(radians(roll), 0, 0);
rot_accel = rotation * rot_accel;
thrust = rotation * thrust;
}
if (pitch_servo >= 0) {
float pitch;
if (pitch_min < pitch_max) {
pitch = constrain_float(pitch_min + (input.servos[pitch_servo]-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max);
} else {
pitch = constrain_float(pitch_max + (2000-input.servos[pitch_servo])*0.001*(pitch_min-pitch_max), pitch_max, pitch_min);
}
Matrix3f rotation;
rotation.identity();
rotation.from_euler(0, radians(pitch), 0);
rot_accel = rotation * rot_accel;
thrust = rotation * thrust;
}
}