/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* simple electric motor simulator class */ #include "SIM_Motor.h" #include using namespace SITL; // calculate rotational accel and thrust for a motor void Motor::calculate_forces(const Aircraft::sitl_input &input, const float thrust_scale, uint8_t motor_offset, Vector3f &rot_accel, Vector3f &thrust) const { float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1); rot_accel.x = -radians(5000.0) * sinf(radians(angle)) * motor_speed; rot_accel.y = radians(5000.0) * cosf(radians(angle)) * motor_speed; rot_accel.z = yaw_factor * motor_speed * radians(400.0); thrust(0, 0, motor_speed * thrust_scale); // newtons if (roll_servo >= 0) { float roll; if (roll_min < roll_max) { roll = constrain_float(roll_min + (input.servos[roll_servo]-1000)*0.001*(roll_max-roll_min), roll_min, roll_max); } else { roll = constrain_float(roll_max + (2000-input.servos[roll_servo])*0.001*(roll_min-roll_max), roll_max, roll_min); } Matrix3f rotation; rotation.from_euler(radians(roll), 0, 0); rot_accel = rotation * rot_accel; thrust = rotation * thrust; } if (pitch_servo >= 0) { float pitch; if (pitch_min < pitch_max) { pitch = constrain_float(pitch_min + (input.servos[pitch_servo]-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max); } else { pitch = constrain_float(pitch_max + (2000-input.servos[pitch_servo])*0.001*(pitch_min-pitch_max), pitch_max, pitch_min); } Matrix3f rotation; rotation.identity(); rotation.from_euler(0, radians(pitch), 0); rot_accel = rotation * rot_accel; thrust = rotation * thrust; } }