Ardupilot2/libraries/Filter/LowPassFilter2p.cpp

132 lines
3.6 KiB
C++

#ifndef HAL_DEBUG_BUILD
#define AP_INLINE_VECTOR_OPS
#pragma GCC optimize("O2")
#endif
#include "LowPassFilter2p.h"
////////////////////////////////////////////////////////////////////////////////////////////
// DigitalBiquadFilter
////////////////////////////////////////////////////////////////////////////////////////////
template <class T>
DigitalBiquadFilter<T>::DigitalBiquadFilter() {
_delay_element_1 = T();
_delay_element_2 = T();
}
template <class T>
T DigitalBiquadFilter<T>::apply(const T &sample, const struct biquad_params &params) {
if(is_zero(params.cutoff_freq) || is_zero(params.sample_freq)) {
return sample;
}
if (!initialised) {
reset(sample, params);
initialised = true;
}
T delay_element_0 = sample - _delay_element_1 * params.a1 - _delay_element_2 * params.a2;
T output = delay_element_0 * params.b0 + _delay_element_1 * params.b1 + _delay_element_2 * params.b2;
_delay_element_2 = _delay_element_1;
_delay_element_1 = delay_element_0;
return output;
}
template <class T>
void DigitalBiquadFilter<T>::reset() {
_delay_element_1 = _delay_element_2 = T();
initialised = false;
}
template <class T>
void DigitalBiquadFilter<T>::reset(const T &value, const struct biquad_params &params) {
_delay_element_1 = _delay_element_2 = value * (1.0 / (1 + params.a1 + params.a2));
initialised = true;
}
template <class T>
void DigitalBiquadFilter<T>::compute_params(float sample_freq, float cutoff_freq, biquad_params &ret) {
ret.cutoff_freq = cutoff_freq;
ret.sample_freq = sample_freq;
if (!is_positive(ret.cutoff_freq)) {
// zero cutoff means pass-thru
return;
}
float fr = sample_freq/cutoff_freq;
float ohm = tanf(M_PI/fr);
float c = 1.0f+2.0f*cosf(M_PI/4.0f)*ohm + ohm*ohm;
ret.b0 = ohm*ohm/c;
ret.b1 = 2.0f*ret.b0;
ret.b2 = ret.b0;
ret.a1 = 2.0f*(ohm*ohm-1.0f)/c;
ret.a2 = (1.0f-2.0f*cosf(M_PI/4.0f)*ohm+ohm*ohm)/c;
}
////////////////////////////////////////////////////////////////////////////////////////////
// LowPassFilter2p
////////////////////////////////////////////////////////////////////////////////////////////
template <class T>
LowPassFilter2p<T>::LowPassFilter2p() {
memset(&_params, 0, sizeof(_params) );
}
// constructor
template <class T>
LowPassFilter2p<T>::LowPassFilter2p(float sample_freq, float cutoff_freq) {
// set initial parameters
set_cutoff_frequency(sample_freq, cutoff_freq);
}
// change parameters
template <class T>
void LowPassFilter2p<T>::set_cutoff_frequency(float sample_freq, float cutoff_freq) {
DigitalBiquadFilter<T>::compute_params(sample_freq, cutoff_freq, _params);
}
// return the cutoff frequency
template <class T>
float LowPassFilter2p<T>::get_cutoff_freq(void) const {
return _params.cutoff_freq;
}
template <class T>
float LowPassFilter2p<T>::get_sample_freq(void) const {
return _params.sample_freq;
}
template <class T>
T LowPassFilter2p<T>::apply(const T &sample) {
if (!is_positive(_params.cutoff_freq)) {
// zero cutoff means pass-thru
return sample;
}
return _filter.apply(sample, _params);
}
template <class T>
void LowPassFilter2p<T>::reset(void) {
return _filter.reset();
}
template <class T>
void LowPassFilter2p<T>::reset(const T &value) {
return _filter.reset(value, _params);
}
/*
* Make an instances
* Otherwise we have to move the constructor implementations to the header file :P
*/
template class LowPassFilter2p<int>;
template class LowPassFilter2p<long>;
template class LowPassFilter2p<float>;
template class LowPassFilter2p<Vector2f>;
template class LowPassFilter2p<Vector3f>;